Structure and binding specificity of the receiver domain of sensor histidine kinase CKI1 from Arabidopsis thaliana

2011 ◽  
Vol 67 (5) ◽  
pp. 827-839 ◽  
Author(s):  
Blanka Pekárová ◽  
Tomáš Klumpler ◽  
Olga Třísková ◽  
Jakub Horák ◽  
Séverine Jansen ◽  
...  
2014 ◽  
Vol 100 ◽  
pp. 6-15
Author(s):  
Petra Borkovcová ◽  
Blanka Pekárová ◽  
Martina Válková ◽  
Radka Dopitová ◽  
Břetislav Brzobohatý ◽  
...  

2001 ◽  
Vol 42 (2) ◽  
pp. 231-235 ◽  
Author(s):  
Chiharu Ueguchi ◽  
Hiromi Koizumi ◽  
Tomomi Suzuki ◽  
Takeshi Mizuno

2017 ◽  
Vol 292 (42) ◽  
pp. 17525-17540 ◽  
Author(s):  
Olga Otrusinová ◽  
Gabriel Demo ◽  
Petr Padrta ◽  
Zuzana Jaseňáková ◽  
Blanka Pekárová ◽  
...  

IUCrJ ◽  
2020 ◽  
Vol 7 (5) ◽  
pp. 934-948
Author(s):  
Shao-Kang Chen ◽  
Hong-Hsiang Guan ◽  
Pei-Hsun Wu ◽  
Li-Ting Lin ◽  
Meng-Chun Wu ◽  
...  

In Pseudomonas aeruginosa, an important opportunistic pathogen that causes numerous acute and chronic infections, the hybrid two-component system (TCS) regulates the swarming ability and biofilm formation with a multistep phosphorelay, and consists of hybrid-sensor histidine kinase (HK), histidine-containing phosphotransfer protein (Hpt) and response regulator (RR). In this work, two crystal structures of HptB and the receiver domain of HK PA1611 (PA1611REC) of P. aeruginosa have been determined in order to elucidate their interactions for the transfer of the phosphoryl group. The structure of HptB folds into an elongated four-helix bundle – helices α2, α3, α4 and α5, covered by the short N-terminal helix α1. The imidazole side chain of the conserved active-site histidine residue His57, located near the middle of helix α3, protrudes from the bundle and is exposed to solvent. The structure of PA1611REC possesses a conventional (β/α)5 topology with five-stranded parallel β-sheets folded in the central region, surrounded by five α-helices. The divalent Mg2+ ion is located in the negatively charged active-site cleft and interacts with Asp522, Asp565 and Arg567. The HptB–PA1611REC complex is further modeled to analyze the binding surface and interactions between the two proteins. The model shows a shape complementarity between the convex surface of PA1611REC and the kidney-shaped HptB with fewer residues and a different network involved in interactions compared with other TCS complexes, such as SLN1-R1/YPD1 from Saccharomyces cerevisiae and AHK5RD/AHP1 from Arabidopsis thaliana. These structural results provide a better understanding of the TCS in P. aeruginosa and could potentially lead to the discovery of a new treatment for infection.


2008 ◽  
Vol 191 (3) ◽  
pp. 687-692 ◽  
Author(s):  
Francesca Scaramozzino ◽  
Andrea White ◽  
Marta Perego ◽  
James A. Hoch

ABSTRACT The Bacillus anthracis BA2291 gene codes for a sensor histidine kinase involved in the induction of sporulation. Genes for orthologs of the sensor domain of the BA2291 kinase exist in virulence plasmids in this organism, and these proteins, when expressed, inhibit sporulation by converting BA2291 to an apparent phosphatase of the sporulation phosphorelay. Evidence suggests that the sensor domains inhibit BA2291 by titrating its activating signal ligand. Studies with purified BA2291 revealed that this kinase is uniquely specific for GTP in the forward reaction and GDP in the reverse reaction. The G1 motif of BA2291 is highly modified from ATP-specific histidine kinases, and modeling this motif in the structure of the kinase catalytic domain suggested how guanine binds to the region. A mutation in the putative coiled-coil linker between the sensor domain and the catalytic domains was found to decrease the rate of the forward autophosphorylation reaction and not affect the reverse reaction from phosphorylated Spo0F. The results suggest that the activating ligand for BA2291 is a critical signal for sporulation and in a limited concentration in the cell. Decreasing the response to it either by slowing the forward reaction through mutation or by titration of the ligand by expressing the plasmid-encoded sensor domains switches BA2291 from an inducer to an inhibitor of the phosphorelay and sporulation.


Structure ◽  
1999 ◽  
Vol 7 (12) ◽  
pp. 1547-1556 ◽  
Author(s):  
Hans-Joachim Müller-Dieckmann ◽  
Alexander A Grantz ◽  
Sung-Hou Kim

2009 ◽  
Vol 16 (5) ◽  
pp. 1003-1009 ◽  
Author(s):  
Mobashar Hussain Urf Turabe Fazil ◽  
Sunil Kumar ◽  
Naidu Subbarao ◽  
Haushila Prasad Pandey ◽  
Durg Vijai Singh

2018 ◽  
Vol 293 (34) ◽  
pp. 13214-13223 ◽  
Author(s):  
Juan L. Teran-Melo ◽  
Gabriela R. Peña-Sandoval ◽  
Hortencia Silva-Jimenez ◽  
Claudia Rodriguez ◽  
Adrián F. Alvarez ◽  
...  

2002 ◽  
Vol 13 (2) ◽  
pp. 412-424 ◽  
Author(s):  
Sheng Li ◽  
Susan Dean ◽  
Zhijian Li ◽  
Joe Horecka ◽  
Robert J. Deschenes ◽  
...  

The yeast “two-component” osmotic stress phosphorelay consists of the histidine kinase, Sln1p, the phosphorelay intermediate, Ypd1p and two response regulators, Ssk1p and Skn7p, whose activities are regulated by phosphorylation of a conserved aspartyl residue in the receiver domain. Dephospho-Ssk1p leads to activation of the hyper-osmotic response (HOG) pathway, whereas phospho-Skn7p presumably leads to activation of hypo-osmotic response genes. The multifunctional Skn7 protein is important in oxidative as well as osmotic stress; however, the Skn7p receiver domain aspartate that is the phosphoacceptor in the SLN1 pathway is dispensable for oxidative stress. Like many well-characterized bacterial response regulators, Skn7p is a transcription factor. In this report we investigate the role of Skn7p in osmotic response gene activation. Our studies reveal that the Skn7p HSF-like DNA binding domain interacts with acis-acting element identified upstream ofOCH1 that is distinct from the previously defined HSE-like Skn7p binding site. Our data support a model in which Skn7p receiver domain phosphorylation affects transcriptional activation rather than DNA binding to this class of DNA binding site.


Sign in / Sign up

Export Citation Format

Share Document