kinase catalytic domain
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 3)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Ying Huang ◽  
Qian Ren

AbstractThe Hippo signalling pathway plays a vital role in organ size control, cell proliferation, apoptosis, and immune regulation. In this study, a Hippo homologue with three isoforms (named MnHippo-a, MnHippo-b, and MnHippo-c) was isolated and characterized for the first time from the freshwater prawn Macrobrachium nipponense. The deduced amino acid sequences of MnHippo-a (698 aa), MnHippo-b (688 aa), and MnHippo-c (656 aa) were highly similar, and they all contained an N-terminal S_TKc (serine/threonine protein kinase catalytic) domain and a C-terminal Mst1_SARAH (Sav/Rassf/Hpo) domain. MnHippo-a and MnHippo-c were derived from alternative splicing. Phylogenetic analysis was performed, and the results revealed that MnHippo was a member of the clade containing STPK4 and Hippo of Penaeus vannamei. The expression distribution showed that MnHippo was constitutively expressed in various tissues of uninfected prawns and highly expressed in the hepatopancreas and intestine. In prawns challenged with Vibrio parahaemolyticus and Staphylococcus aureus, the expression of MnHippo in haemocytes was significantly upregulated. Furthermore, in MnHippo-knockdown prawns injected with V. parahaemolyticus or S. aureus, the transcription levels of five antimicrobial peptides were downregulated. MnHippo silencing weakened the clearance of V. parahaemolyticus and S. aureus in prawns. The survival rate of the MnHippo-dsRNA group was obviously decreased from 2 to 6 days post-injection with V. parahaemolyticus or S. aureus. Hence, MnHippo might be involved in the antibacterial immune defence of M. nipponense.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Fuyou Fu ◽  
Xunjia Liu ◽  
Rui Wang ◽  
Chun Zhai ◽  
Gary Peng ◽  
...  

Abstract The fungal pathogen Leptosphaeria maculans causes blackleg disease on canola and rapeseed (Brassica napus) in many parts of the world. A B. napus cultivar, ‘Quinta’, has been widely used for the classification of L. maculans into pathogenicity groups. In this study, we confirmed the presence of Rlm1 in a DH line (DH24288) derived from B. napus cultivar ‘Quinta’. Rlm1 was located on chromosome A07, between 13.07 to 22.11 Mb, using a BC1 population made from crosses of F1 plants of DH16516 (a susceptible line) x DH24288 with bulked segregant RNA Sequencing (BSR-Seq). Rlm1 was further fine mapped in a 100 kb region from 19.92 to 20.03 Mb in the BC1 population consisting of 1247 plants and a F2 population consisting of 3000 plants using SNP markers identified from BSR-Seq through Kompetitive Allele-Specific PCR (KASP). A potential resistance gene, BnA07G27460D, was identified in this Rlm1 region. BnA07G27460D encodes a serine/threonine dual specificity protein kinase, catalytic domain and is homologous to STN7 in predicted genes of B. rapa and B. oleracea, and A. thaliana. Robust SNP markers associated with Rlm1 were developed, which can assist in introgression of Rlm1 and confirm the presence of Rlm1 gene in canola breeding programs.


2019 ◽  
Vol 12 (1) ◽  
pp. 7 ◽  
Author(s):  
Ralf Schirrmacher ◽  
Justin J. Bailey ◽  
Andrew V. Mossine ◽  
Peter J. H. Scott ◽  
Lena Kaiser ◽  
...  

The tropomyosin receptor kinases family (TrkA, TrkB, and TrkC) supports neuronal growth, survival, and differentiation during development, adult life, and aging. TrkA/B/C downregulation is a prominent hallmark of various neurological disorders including Alzheimer’s disease (AD). Abnormally expressed or overexpressed full-length or oncogenic fusion TrkA/B/C proteins were shown to drive tumorigenesis in a variety of neurogenic and non-neurogenic human cancers and are currently the focus of intensive clinical research. Neurologic and oncologic studies of the spatiotemporal alterations in TrkA/B/C expression and density and the determination of target engagement of emerging antineoplastic clinical inhibitors in normal and diseased tissue are crucially needed but have remained largely unexplored due to the lack of suitable non-invasive probes. Here, we review the recent development of carbon-11- and fluorine-18-labeled positron emission tomography (PET) radioligands based on specifically designed small molecule kinase catalytic domain-binding inhibitors of TrkA/B/C. Basic developments in medicinal chemistry, radiolabeling and translational PET imaging in multiple species including humans are highlighted.


Open Biology ◽  
2016 ◽  
Vol 6 (7) ◽  
pp. 160089 ◽  
Author(s):  
Selena G. Burgess ◽  
Arkadiusz Oleksy ◽  
Tommaso Cavazza ◽  
Mark W. Richards ◽  
Isabelle Vernos ◽  
...  

The vast majority of clinically approved protein kinase inhibitors target the ATP-binding pocket directly. Consequently, many inhibitors have broad selectivity profiles and most have significant off-target effects. Allosteric inhibitors are generally more selective, but are difficult to identify because allosteric binding sites are often unknown or poorly characterized. Aurora-A is activated through binding of TPX2 to an allosteric site on the kinase catalytic domain, and this knowledge could be exploited to generate an inhibitor. Here, we generated an allosteric inhibitor of Aurora-A kinase based on a synthetic, vNAR single domain scaffold, vNAR-D01. Biochemical studies and a crystal structure of the Aurora-A/vNAR-D01 complex show that the vNAR domain overlaps with the TPX2 binding site. In contrast with the binding of TPX2, which stabilizes an active conformation of the kinase, binding of the vNAR domain stabilizes an inactive conformation, in which the αC-helix is distorted, the canonical Lys-Glu salt bridge is broken and the regulatory (R-) spine is disrupted by an additional hydrophobic side chain from the activation loop. These studies illustrate how single domain antibodies can be used to characterize the regulatory mechanisms of kinases and provide a rational basis for structure-guided design of allosteric Aurora-A kinase inhibitors.


2015 ◽  
Vol 23 (21) ◽  
pp. 7000-7006 ◽  
Author(s):  
Adam K. Charnley ◽  
Máire A. Convery ◽  
Ami Lakdawala Shah ◽  
Emma Jones ◽  
Philip Hardwicke ◽  
...  

2013 ◽  
Vol 26 (10) ◽  
pp. 695-704 ◽  
Author(s):  
R. C. Overman ◽  
I. Green ◽  
C. M. Truman ◽  
J. A. Read ◽  
K. J. Embrey ◽  
...  

2013 ◽  
Vol 57 (7) ◽  
pp. 3375-3379 ◽  
Author(s):  
Sunwen Chou ◽  
Ronald J. Ercolani ◽  
Gail Marousek ◽  
Terry L. Bowlin

ABSTRACTHuman cytomegalovirus UL97 kinase mutations that commonly confer ganciclovir resistance cluster in different parts of the gene than those conferring resistance to maribavir, an experimental UL97 kinase inhibitor. The drug resistance, growth, and autophosphorylation phenotypes of several unusual UL97 mutations in the kinase catalytic domain were characterized. Mutations V466G and P521L, described in clinical specimens from ganciclovir-treated subjects, conferred a UL97 kinase knockout phenotype with no autophosphorylation, a severe growth defect, and high-level ganciclovir, cyclopropavir, and maribavir resistance, similar to mutations at the catalytic lysine residue K355. Mutations F342S and V356G, observed after propagation under cyclopropavirin vitro, showed much less growth attenuation and moderate- to high-level resistance to all three drugs while maintaining UL97 autophosphorylation competence and normal cytopathic effect in cell culture, a novel phenotype. F342S is located in the ATP-binding P-loop and is homologous to a c-Abl kinase mutation conferring resistance to imatinib. UL97 mutants with relatively preserved growth fitness and multidrug resistance are of greater concern in antiviral therapy than the severely growth-impaired UL97 knockout mutants. Current diagnostic genotyping assays are unlikely to detect F342S and V356G, and the frequency of their appearance in clinical specimens remains undefined.


2012 ◽  
Vol 442 (1) ◽  
pp. 105-118 ◽  
Author(s):  
Craig R. Pigott ◽  
Halina Mikolajek ◽  
Claire E. Moore ◽  
Stephen J. Finn ◽  
Curtis W. Phippen ◽  
...  

eEF2K (eukaryotic elongation factor 2 kinase) is a Ca2+/CaM (calmodulin)-dependent protein kinase which regulates the translation elongation machinery. eEF2K belongs to the small group of so-called ‘α-kinases’ which are distinct from the main eukaryotic protein kinase superfamily. In addition to the α-kinase catalytic domain, other domains have been identified in eEF2K: a CaM-binding region, N-terminal to the kinase domain; a C-terminal region containing several predicted α-helices (resembling SEL1 domains); and a probably rather unstructured ‘linker’ region connecting them. In the present paper, we demonstrate: (i) that several highly conserved residues, implicated in binding ATP or metal ions, are critical for eEF2K activity; (ii) that Ca2+/CaM enhance the ability of eEF2K to bind to ATP, providing the first insight into the allosteric control of eEF2K; (iii) that the CaM-binding/α-kinase domain of eEF2K itself possesses autokinase activity, but is unable to phosphorylate substrates in trans; (iv) that phosphorylation of these substrates requires the SEL1-like domains of eEF2K; and (v) that highly conserved residues in the C-terminal tip of eEF2K are essential for the phosphorylation of eEF2, but not a peptide substrate. On the basis of these findings, we propose a model for the functional organization and control of eEF2K.


Sign in / Sign up

Export Citation Format

Share Document