Neotyphodium endophyte increases Achnatherum inebrians (drunken horse grass) resistance to herbivores and seed predators

Weed Research ◽  
2011 ◽  
Vol 52 (1) ◽  
pp. 70-78 ◽  
Author(s):  
X X ZHANG ◽  
C J LI ◽  
Z B NAN ◽  
C MATTHEW
2020 ◽  
pp. 1-4
Author(s):  
Morgana Maria Arcanjo Bruno ◽  
Klécia Gili Massi ◽  
Alexander V. Christianini ◽  
John du Vall Hay

Abstract Predispersal seed predation is one of the main causes of seed mortality in plant populations, contributing to decreased plant recruitment. Seed loss has previously been found to be related to crop size. Thus, we examined the influence of individual crop size on predispersal seed predation by beetles in the palm Syagrus flexuosa in the Brazilian savanna. The study was carried out in three tropical woodland savanna sites, where we sampled the total seed crop of 46 fruiting palms and checked the presence of beetle larvae inside all seeds per plant. We observed predispersal seed predation of S. flexuosa from all sites and a high variation in the number of seeds preyed on per individual palm. Crop size had a positive influence on the number of seeds lost to predispersal seed predators. Variations in levels of predispersal seed predation may also be accounted for by the reproductive phenology of S. flexuosa. If fruits are not available at the same time, less resource is available for predators and therefore a high proportion of seeds may be preyed on. Thus, our study demonstrates that an individual plant trait, crop size, is an important predictor of beetle seed damage per palm and a driver of the number of seeds lost to predispersal seed predators.


Weed Science ◽  
2020 ◽  
pp. 1-29
Author(s):  
Yonghuan Yue ◽  
Guili Jin ◽  
Weihua Lu ◽  
Ke Gong ◽  
Wanqiang Han ◽  
...  

Abstract Drunken horse grass [Achnatherum inebrians (Hance) Keng] is a perennial poisonous weed in western China. A comprehensive understanding of the ecological response of A. inebrians germination to environmental factors would facilitate the formulation of better management strategies for this weed. Experiments were conducted under laboratory conditions to assess the effects of various abiotic factors, including temperature, light, water, pH and burial depth, on the seed germination and seedling emergence of A. inebrians. The seeds germinated at constant temperatures of 15, 20, 25, 30, 35°C and in alternating-temperature regimes of 15/5, 20/10, 25/15, 30/20, 35/25, 40/30°C, and the seed germination percentages under constant and alternating temperatures ranged from 51% to 94% and 15% to 93%, respectively. Maximum germination occurred at a constant temperature of 25°C, and germination was prevented at 45/35°C. Light did not appear to affect seed germination. The germination percentage of seeds was more than 75% in the pH range of 5 to 10, with the highest germination percentage at pH 6. The seeds germinated at osmotic potentials of 0 MPa to -1.0 MPa, but decreasing osmotic potential inhibited germination, with no germination at -1.2MPa. After 21 d of low osmotic stress, the seeds that did not germinate after rehydration had not lost their vitality. The seedling emergence percentage was highest (90%) when seeds were buried at 1 cm but declined with increasing burial depth and no emergence at 9 cm. Deep tillage may be effective in limiting the seed germination and emergence of this species. The results of this study provide useful information on the conditions necessary for A. inebrians germination and provide a theoretical basis for science-based prediction, prevention and control of this species.


Oikos ◽  
2008 ◽  
Vol 117 (7) ◽  
pp. 1020-1025 ◽  
Author(s):  
Leena Arvanitis ◽  
Christer Wiklund ◽  
Johan Ehrlén
Keyword(s):  

Botany ◽  
2009 ◽  
Vol 87 (1) ◽  
pp. 88-96 ◽  
Author(s):  
Pedro E. Gundel ◽  
M. Alejandra Martínez-Ghersa ◽  
Lucas A. Garibaldi ◽  
Claudio M. Ghersa

Neotyphodium endophyte fungi are vertically transmitted symbionts of cool-season grasses. The seed phase of the grass’ life cycle appears to be critical for the persistence of the fungus. Endophyte viability decreases faster than seed viability, but little is known of the effects of this endophyte on seed viability. The endophyte could affect seed viability through changes in water content. Here, we assessed the effects of the endophyte on seed viability, the differential survival of endophyte and seed, and the effects of infection on seed water content. Viability of endophyte-infected and noninfected seeds and endophyte were evaluated over a period of 729 d under 12 controlled environmental conditions. Seed viability was reduced by the infection at high temperature and high relative humidity, but not under other conditions. Moreover, endophyte viability decreased faster than seed viability only under high humidity or high temperature. Seed water content was not affected by endophyte presence. The proportion of viable infected seeds was mainly affected by the loss in endophyte viability and secondly by the differential survival of infected and noninfected seeds. Knowledge on the relative importance of these processes is critical to understand the factors affecting the efficiency of endophyte vertical transmission and the frequency of endophyte-infected plants.


Sign in / Sign up

Export Citation Format

Share Document