Sucrose phosphate synthase and other sucrose metabolizing enzymes in fruits of various species

1991 ◽  
Vol 82 (2) ◽  
pp. 191-196 ◽  
Author(s):  
Natalie L. Hubbard ◽  
D. Mason Pharr ◽  
Steven C. Huber
1997 ◽  
Vol 122 (3) ◽  
pp. 310-314 ◽  
Author(s):  
Donald E. Irving ◽  
Paul L. Hurst ◽  
Jonathan S. Ragg

During this study, we divided the developmental growth pattern of buttercup squash into three phases: 1) early growth, from flowering up to 30 days after flowering; 2) maturation, from 30 days until 60 days after flowering (or harvest); and 3) ripening, from 60 days (or harvest) until ≈100 days after flowering. Harvest occurred at 48 days after flowering. Fruit growth (expansion), starch, and dry matter accumulation were largely completed during early growth, and there was a progressive decline in the respiration rate. Extractable activities of acid and alkaline invertases, sucrose synthase, alkaline α-galactosidase, and sucrose phosphate synthase (assayed with saturating substrates) were high initially but declined markedly during this phase. Glucose, fructose, and low concentrations of raffinose saccharides were present, but no sucrose was detected. During maturation, starch and dry matter remained nearly constant and sucrose began to accumulate. During ripening, starch was degraded, sucrose synthase activity was significant but relatively constant, sucrose phosphate synthase activity increased, and sucrose continued to accumulate.


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 591b-591
Author(s):  
Philipp W. Simon

Four carrot populations with low total sugar/low reducing sugar concentration, low total sugar/high reducing sugar concentration, high total sugar/low reducing sugar concentration, and high total sugar/high reducing sugar concentration were compared for pH 4.5 invertase, pH 7.5 invertase, sucrose synthase, and sucrose phosphate synthase activity. Invertase activities correlated well with reducing sugar concentration. Sucrose synthase and sucrose phosphate synthase activities were low in all populations. Total sugar level was not well-correlated with the activity of any enzyme measured. Developmental analysis indicated some reduction in enzyme activity as roots grew.


HortScience ◽  
1996 ◽  
Vol 31 (5) ◽  
pp. 754f-755 ◽  
Author(s):  
F.M. Woods ◽  
D.G. Himelrick ◽  
R. Aynaou ◽  
G.E. Boyhan ◽  
T.M. Brasher

Changes in the activities of sucrose-metabolizing enzymes as related to ontogeny and ripening were studied in fruit mesocarp tissues of watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai, cvs. A.U. Producer and Sweet Scarlet]. The levels of soluble sugars and the activities of sucrose synthase (SS; EC 2.4.1.13), sucrose-phosphate synthase (SPS; EC 2.4.1.14), and invertase (INV; EC 3.2.1.26) were measured. The temporal pattern of these enzymes relative to the levels of soluble sugars were similar for both cultivars. `Sweet Scarlet' was characterized by having higher INV and SPS activities, while SS activities tended to be similar in both cultivars during fruit development. During later stages of ripening, `Sweet Scarlet' tended toaccumulate reducing sugars, while `AU Producer' tended to accumulate sucrose and therefore had lower sucrose-cleaving enzyme activity. Results indicate that SPS and INV appear to play a prominent role in carbohydrate metabolism in developing and ripening tissues of watermelon.


1984 ◽  
Vol 34 (3) ◽  
pp. 247-252 ◽  
Author(s):  
Thomas W. Rufty ◽  
Steven C. Huber ◽  
Phillip S. Kerr

PLoS ONE ◽  
2017 ◽  
Vol 12 (10) ◽  
pp. e0186650 ◽  
Author(s):  
Juan Wang ◽  
Junjie Du ◽  
Xiaopeng Mu ◽  
Pengfei Wang

The use of elasticity coefficients and flux-control coefficients in a quantitative treatment of control is discussed, with photosynthetic sucrose synthesis as an example. Experimental values for elasticities for the cytosolic fructose 1,6-bisphosphatase and sucrose phosphate synthase are derived from their in vitro properties, and from an analysis of the in vivo relation between fluxes and metabolite levels. An empirical factor α , describing the response of the fructose 2,6-bisphosphate regulator cycle to fructose 6-phosphate is described, and an expression is derived relating α to the elasticities of the enzymes involved in this regulator cycle. The in vivo values for elasticities and α are then used in a modified form of the connectivity theorem to estimate the flux control coefficients of the cytosolic fructose 1,6-bisphosphatase and sucrose phosphate synthase during rapid photosynthetic sucrose synthesis.


Sign in / Sign up

Export Citation Format

Share Document