scholarly journals Interaction of Wheat-Germ Agglutinin with Bacterial Cells and Cell-Wall Polymers

1975 ◽  
Vol 55 (1) ◽  
pp. 257-262 ◽  
Author(s):  
Reuben LOTAN ◽  
Nathan SHARON ◽  
David MIRELMAN
2019 ◽  
Vol 14 (5) ◽  
pp. 1934578X1984924 ◽  
Author(s):  
Khouzaima el Biari ◽  
Ángel Gaudioso ◽  
M. Carmen Fernández-Alonso ◽  
Jesús Jiménez-Barbero ◽  
F. Javier Cañada

Wheat germ agglutinin (WGA) is a lectin composed of 4 homologous hevein domains. It has been shown that WGA binds N-acetyl glucosamine (GlcNAc)-related oligosaccharides and has applications as commercial reagent to detect glycans containing such modified residues. Peptidoglycan (PGN), the main component of the bacterial cell wall, is a polymeric material made of repeating disaccharide units of GlcNAc- N-acetylmuramic acid cross-linked with short polypeptide fragments. Wheat germ agglutinin is able to bind bacterial cells, a phenomenon that could correlate with its plant-defense capacities, but there is no information at the molecular level about how WGA binds to the PGN. Herein, we present structural data on the binding of a short PGN fragment to WGA by means of saturation transfer difference nuclear magnetic resonance studies. The results show that the GlcNAc residue establishes the major contacts with WGA, followed by the N-acetylmuramic acid residue. In contrast, the peptide moiety displays minor contacts at the binding site.


1976 ◽  
Vol 22 (5) ◽  
pp. 745-751 ◽  
Author(s):  
Takashi Watanabe

Coliphage T4D was strongly adsorbed to intact lipopolysaccharides and alkaline and lipase-treated lipopolysaccharides from cells of Escherichia coli B, but was not so adsorbed to heat-treated cells. In contrast, coliphage T2h was not adsorbed to lipopolysaccharides and the heat-treated cells.Acid hydrolysate of lipopolysaccharides strongly inhibited the adsorption of phage T4D to acetone and ether-treated cells. The adsorption of phage T4D to the acetone and ether-treated cells was markedly inhibited by authentic D-glucosamine, N-acetyl-D-glucosamine, α-methyl-N-acetyl-D-glucosaminide, α-methyl-D-glucoside, and D-maltose. Authentic D-glucose and D,L-2,6-diaminopimelic acid also showed similar activity. These compounds did not affect the adsorption of phage T2h to the acetone- and ether-treated cells. Concanavalin A and wheat-germ agglutinin inhibited phage T4D adsorption to the acetone and ether-treated cells probably by blocking the phage-receptor sites on the cell wall. The blocking by concanavalin A and by wheat-germ agglutinin was reversed by α-methyl-D-glucoside and by α-methyl-N-acetyl-D-glucosaminide, respectively. Results suggested the possibility that coliphage T4D requires N-acetyl-D-glucosaminyl-glucose or glucosyl-D-glucosamine residues of the core of lipopolysaccharides for the initial attachment to the cell wall of Escherichia coli B.


1992 ◽  
Vol 70 (10) ◽  
pp. 2017-2027 ◽  
Author(s):  
Wilma L. Lingle ◽  
Ronald P. Clay ◽  
David Porter

The ultrastructure of events in basidiosporogenesis in Panellus stypticus was examined using conventional, aqueous-based fixation procedures and freeze substitution fixation following plunge freezing in liquid propane. Freeze substitution was superior in preserving cytological features and in retaining cell wall and extracellular materials. Synapsis, all stages of meiosis I (including prophase, metaphase, anaphase, and telophase), and prophase of meiosis II were observed. The nuclear envelope breaks down during meiosis I, temporarily reforms during interphase, and is at least partially broken down during meiosis II. Many stages of spore development, including sterigma initiation, sterigma elongation, organelle translocation, and nuclear migration, were observed. Spindle pole bodies with microtubule arrays were associated with nuclear migration into developing spores. Analysis of hymenial cells with gold-tagged lectins and enzymes revealed an α-amylase positive outer cell wall layer specific to basidiospores. Only after basidiospore release were surfaces of sterigmata and basidia similarly labeled. All cell walls observed were positive for wheat germ agglutinin, indicating the presence of chitin. Septa-delimiting basidiospores from sterigmata were heavily labeled with wheat germ agglutinin. This is the first investigation of basidiosporogenesis in a homobasidiomycete preserved for transmission electron microscopy by rapid freezing and freeze substitution. Key words: fungal cell walls, lectins, gold labeling, meiosis, rapid freezing, transmission electron microscopy.


1989 ◽  
Vol 62 (02) ◽  
pp. 815 ◽  
Author(s):  
Marjorie B Zucker ◽  
Robert A Grant ◽  
Evelyn A Mauss

2006 ◽  
Vol 6 (9) ◽  
pp. 2959-2966 ◽  
Author(s):  
Na Zhang ◽  
Qineng Ping ◽  
Guihua Huang ◽  
Xiuzhen Han ◽  
Yanna Cheng ◽  
...  

Wheat germ agglutinin (WGA) modified liposomes and solid lipid nanoparticles (SLNs) were evaluated for improving intestinal absorption of insulin. In an in situ local intestinal perfusion experiment, formulations containing 100 IU/kg insulin were administered to the duodenum, jejunum, and ileum of fasted rats. As hypothesized, ileum was the best intestinal location for the absorption of insulin-containing liposomes. Serum insulin concentrations decreased for the various formulations in different absorption sites according to the following trends: Duodenum > ileum > jejunum for WGA-modified insulin-containing liposomes; duodenum > jejunum > ileum for WGA-modified insulin-containing SLNs; ileum > jejunum > duodenum for insulin-containing liposomes; ileum > duodenum > jejunum for insulin-containing SLNs; and duodenum ≥ ileum > jejunum for aqueous solution of insulin. These results imply that the nanoparticle type and delivery site were important factors with respect to increasing the bioavailability of insulin following oral administration. The proteolytic degradation as well as the epithelial permeability were primary determinants influcing insulin mucosal absorption.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joshua W. McCausland ◽  
Xinxing Yang ◽  
Georgia R. Squyres ◽  
Zhixin Lyu ◽  
Kevin E. Bruce ◽  
...  

AbstractThe FtsZ protein is a central component of the bacterial cell division machinery. It polymerizes at mid-cell and recruits more than 30 proteins to assemble into a macromolecular complex to direct cell wall constriction. FtsZ polymers exhibit treadmilling dynamics, driving the processive movement of enzymes that synthesize septal peptidoglycan (sPG). Here, we combine theoretical modelling with single-molecule imaging of live bacterial cells to show that FtsZ’s treadmilling drives the directional movement of sPG enzymes via a Brownian ratchet mechanism. The processivity of the directional movement depends on the binding potential between FtsZ and the sPG enzyme, and on a balance between the enzyme’s diffusion and FtsZ’s treadmilling speed. We propose that this interplay may provide a mechanism to control the spatiotemporal distribution of active sPG enzymes, explaining the distinct roles of FtsZ treadmilling in modulating cell wall constriction rate observed in different bacteria.


2017 ◽  
Vol 95 (12) ◽  
pp. 937-947 ◽  
Author(s):  
M. Hinzmann ◽  
M. Lopes-Lima ◽  
F. Cerca ◽  
A. Correia ◽  
J. Machado ◽  
...  

Haemocytes play a major role in molluscs immunity. Functional studies are, however, impaired by limited available experimental tools to identify and sort distinct haemocyte populations. Therefore, using nonlethal methods, we aimed at evaluating whether lectin staining combined with flow cytometry could be used to distinguish circulating haemocyte populations from two freshwater bivalves of the family Unionidae, the duck mussel (Anodonta anatina (L., 1758)) and the swan mussel (Anodonta cygnea (L., 1758)). Based on classical classification, haemocytes were distinguished as granulocytes and hyalinocytes and cytological features were visualized using transmission microscopy and staining techniques. Size, granularity, viability, and surface staining using lectins as specific probes were analysed by flow cytometry and fluorescence microscopy. The microscopic proportions of granulocytes and hyalinocytes significantly differed, being of 70% and 30% for A. cygnea and of 85% and 15% for A. anatina, respectively. Two haemocyte populations were sorted by flow cytometry based on size and granularity and confirmed as granulocytes and hyalinocytes. Interestingly, two different granulocyte populations could be further discriminated in A. cygnea according to their binding affinity to wheat-germ agglutinin (WGA), whereas granulocytes of A. anatina all stained similarly. Our results show that WGA labelling combined with flow cytometry can be used to better discriminate Anodonta haemocyte populations and obtain purified populations for functional studies.


Sign in / Sign up

Export Citation Format

Share Document