scholarly journals Effect of troponin-tropomyosin complex and Ca2+ on conformational changes in F-actin induced by myosin subfragment-1

1983 ◽  
Vol 136 (2) ◽  
pp. 363-369 ◽  
Author(s):  
Yurii S. BOROVIKOV ◽  
Nikolai B. GUSEV
2020 ◽  
Vol 21 (12) ◽  
pp. 4421
Author(s):  
Yurii S. Borovikov ◽  
Armen O. Simonyan ◽  
Stanislava V. Avrova ◽  
Vladimir V. Sirenko ◽  
Charles S. Redwood ◽  
...  

Substitution of Ala for Glu residue in position 173 of γ-tropomyosin (Tpm3.12) is associated with muscle weakness. Here we observe that this mutation increases myofilament Ca2+-sensitivity and inhibits in vitro actin-activated ATPase activity of myosin subfragment-1 at high Ca2+. In order to determine the critical conformational changes in myosin, actin and tropomyosin caused by the mutation, we used the technique of polarized fluorimetry. It was found that this mutation changes the spatial arrangement of actin monomers and myosin heads, and the position of the mutant tropomyosin on the thin filaments in muscle fibres at various mimicked stages of the ATPase cycle. At low Ca2+ the E173A mutant tropomyosin shifts towards the inner domains of actin at all stages of the cycle, and this is accompanied by an increase in the number of switched-on actin monomers and myosin heads strongly bound to F-actin even at relaxation. Contrarily, at high Ca2+ the amount of the strongly bound myosin heads slightly decreases. These changes in the balance of the strongly bound myosin heads in the ATPase cycle may underlie the occurrence of muscle weakness. W7, an inhibitor of troponin Ca2+-sensitivity, restores the increase in the number of myosin heads strongly bound to F-actin at high Ca2+ and stops their strong binding at relaxation, suggesting the possibility of using Ca2+-desensitizers to reduce the damaging effect of the E173A mutation on muscle fibre contractility.


1992 ◽  
Vol 284 (1) ◽  
pp. 75-79 ◽  
Author(s):  
J P Labbé ◽  
M Boyer ◽  
C Roustan ◽  
Y Benyamin

The actin-myosin head complex in the rigor state reveals several high-affinity sites on the actin molecule in sequences 18-28 and 40-113. In the presence of Mg(2+)-ATP, participation of the actin N-terminal 1-7 sequence is known to occur. The proximity of the C-terminal region of actin to the A1 light chain of the myosin head [S-1(A1)] (where S-1 is myosin subfragment-1) was described previously. We observed that C-terminal antigenic structures located near Met-305, Met-325 and Met-355 and the C-terminal end (Cys-374) of actin are markedly modified in the presence of S-1(A1), S-1(A2) and scallop S-1 and in the absence of Mg(2+)-ATP. This seems to rule out any important specific involvement of the A1 light chain in the described conformational changes. An S-1-binding site was located in this actin C-terminal region by testing the tryptic CB9 peptide (360-372 sequence) previously implicated in the A1 light chain interaction. This peptide was able to bind well to S-1(A1), S-1(A2) and scallop S-1, but not in the presence of Mg(2+)-pyrophosphate. These results strengthen the hypothesis of a multisite interface between S-1 and actin located in the actin subdomain I.


Biochemistry ◽  
1994 ◽  
Vol 33 (37) ◽  
pp. 11286-11295 ◽  
Author(s):  
Brigitte C. Phan ◽  
Pearl Cheung ◽  
Miller Carl J. ◽  
Emil Reisler ◽  
Andras Muhlrad

Author(s):  
Donald A. Winkelmann

The primary role of the interaction of actin and myosin is the generation of force and motion as a direct consequence of the cyclic interaction of myosin crossbridges with actin filaments. Myosin is composed of six polypeptides: two heavy chains of molecular weight 220,000 daltons and two pairs of light chains of molecular weight 17,000-23,000. The C-terminal portions of the myosin heavy chains associate to form an α-helical coiled-coil rod which is responsible for myosin filament formation. The N-terminal portion of each heavy chain associates with two different light chains to form a globular head that binds actin and hydrolyses ATP. Myosin can be fragmented by limited proteolysis into several structural and functional domains. It has recently been demonstrated using an in vitro movement assay that the globular head domain, subfragment-1, is sufficient to cause sliding movement of actin filaments.The discovery of conditions for crystallization of the myosin subfragment-1 (S1) has led to a systematic analysis of S1 structure by x-ray crystallography and electron microscopy. Image analysis of electron micrographs of thin sections of small S1 crystals has been used to determine the structure of S1 in the crystal lattice.


1989 ◽  
Vol 264 (18) ◽  
pp. 10810-10819
Author(s):  
K N Rajasekharan ◽  
M Mayadevi ◽  
M Burke

Sign in / Sign up

Export Citation Format

Share Document