scholarly journals Sulfite oxidase from chicken liver. Further characterization of the role of carboxyl groups in the reaction with cytochrome c

1988 ◽  
Vol 172 (2) ◽  
pp. 377-381 ◽  
Author(s):  
Martin RITZMANN ◽  
Hans Rudolf BOSSHARD
2015 ◽  
Vol 87 ◽  
pp. S35 ◽  
Author(s):  
Murugesan Velayutham ◽  
Craig F Hemann ◽  
Arturo J Cardounel' ◽  
Jay L Zweier

2009 ◽  
Vol 131 (43) ◽  
pp. 15612-15614 ◽  
Author(s):  
Jing Yang ◽  
Richard Rothery ◽  
Joseph Sempombe ◽  
Joel H. Weiner ◽  
Martin L. Kirk

2016 ◽  
Vol 5 ◽  
pp. 96-104 ◽  
Author(s):  
Murugesan Velayutham ◽  
Craig F. Hemann ◽  
Arturo J. Cardounel ◽  
Jay L. Zweier

2021 ◽  
Author(s):  
Johannes F Hevler ◽  
Riccardo Zenezini Chiozzi ◽  
Alfredo Cabrera-Orefice ◽  
Ulrich Brandt ◽  
Susanne Arnold ◽  
...  

Combining mass spectrometry based chemical cross-linking and complexome profiling, we analyzed the interactome of heart mitochondria. We focused on complexes of oxidative phosphorylation and found that dimeric apoptosis inducing factor 1 (AIFM1) forms a defined complex with ~10% of monomeric cytochrome c oxidase (COX), but hardly interacts with respiratory chain supercomplexes. Multiple AIFM1 inter-crosslinks engaging six different COX subunits provided structural restraints to build a detailed atomic model of the COX-AIFM12 complex. Application of two complementary proteomic approaches thus provided unexpected insight into the macromolecular organization of the mitochondrial complexome. Our structural model excludes direct electron transfer between AIFM1 and COX. Notably however, the binding site of cytochrome c remains accessible allowing formation of a ternary complex. The discovery of the previously overlooked COX-AIFM12 complex and clues provided by the structural model hint at a role of AIFM1 in OXPHOS biogenesis and in programmed cell death.


Author(s):  
L. T. Germinario

Understanding the role of metal cluster composition in determining catalytic selectivity and activity is of major interest in heterogeneous catalysis. The electron microscope is well established as a powerful tool for ultrastructural and compositional characterization of support and catalyst. Because the spatial resolution of x-ray microanalysis is defined by the smallest beam diameter into which the required number of electrons can be focused, the dedicated STEM with FEG is the instrument of choice. The main sources of errors in energy dispersive x-ray analysis (EDS) are: (1) beam-induced changes in specimen composition, (2) specimen drift, (3) instrumental factors which produce background radiation, and (4) basic statistical limitations which result in the detection of a finite number of x-ray photons. Digital beam techniques have been described for supported single-element metal clusters with spatial resolutions of about 10 nm. However, the detection of spurious characteristic x-rays away from catalyst particles produced images requiring several image processing steps.


2004 ◽  
Vol 71 ◽  
pp. 97-106 ◽  
Author(s):  
Mark Burkitt ◽  
Clare Jones ◽  
Andrew Lawrence ◽  
Peter Wardman

The release of cytochrome c from mitochondria during apoptosis results in the enhanced production of superoxide radicals, which are converted to H2O2 by Mn-superoxide dismutase. We have been concerned with the role of cytochrome c/H2O2 in the induction of oxidative stress during apoptosis. Our initial studies showed that cytochrome c is a potent catalyst of 2′,7′-dichlorofluorescin oxidation, thereby explaining the increased rate of production of the fluorophore 2′,7′-dichlorofluorescein in apoptotic cells. Although it has been speculated that the oxidizing species may be a ferryl-haem intermediate, no definitive evidence for the formation of such a species has been reported. Alternatively, it is possible that the hydroxyl radical may be generated, as seen in the reaction of certain iron chelates with H2O2. By examining the effects of radical scavengers on 2′,7′-dichlorofluorescin oxidation by cytochrome c/H2O2, together with complementary EPR studies, we have demonstrated that the hydroxyl radical is not generated. Our findings point, instead, to the formation of a peroxidase compound I species, with one oxidizing equivalent present as an oxo-ferryl haem intermediate and the other as the tyrosyl radical identified by Barr and colleagues [Barr, Gunther, Deterding, Tomer and Mason (1996) J. Biol. Chem. 271, 15498-15503]. Studies with spin traps indicated that the oxo-ferryl haem is the active oxidant. These findings provide a physico-chemical basis for the redox changes that occur during apoptosis. Excessive changes (possibly catalysed by cytochrome c) may have implications for the redox regulation of cell death, including the sensitivity of tumour cells to chemotherapeutic agents.


Author(s):  
Natalia Carolina Petrillo

ResumenEn el presente trabajo se intentará mostrar que la fenomenología no conduce a una postura solipsista. Para ello, se caracterizará en qué consiste el solipsismo. Luego, se intentará refutar a lo que se ha de llamar “solipsismo metafísico” y “solipsismo gnoseológico”, con el objetivo principal de poner de manifiesto el fundamento de motivación para la salida de la ficción solipsista.Palabras claves:Phenomenology – solipsim – empatía - HusserlAbstractWith the aim of showing that phenomenology does not lead in solipsism, I will first attempt a characterization of it. Then, I will attempt a refutation of the so-called “metaphysical” and “epistemological” solipsisms. Finally, the nature and role of Husserl´s solipsistic fiction is examined, and the grounds that motivate the overcoming of this standpoint are disclosed.key wordsFenomenología – solipsismo - empathy – Husserl


Sign in / Sign up

Export Citation Format

Share Document