scholarly journals ADP-ribosylation of actin isoforms by Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin

1990 ◽  
Vol 194 (1) ◽  
pp. 237-241 ◽  
Author(s):  
Stefan MAUSS ◽  
Christine CHAPONNIER ◽  
Ingo JUST ◽  
Klaus AKTORIES ◽  
Giulio GABBIANI
1993 ◽  
Vol 291 (2) ◽  
pp. 409-412 ◽  
Author(s):  
I Just ◽  
E S Hennessey ◽  
D R Drummond ◽  
K Aktories ◽  
J C Sparrow

Purified Drosophila indirect-flight-muscle actin and arthrin, an actin-ubiquitin conjugate, were ADP-ribosylated by Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin. Phalloidin treatment inhibited the ADP-ribosylation of Drosophila actin and arthrin. Like actin, the ADP-ribose-arthrin linkage was sensitive towards hydroxylamine treatment, indicating arginine as the amino acid acceptor. Actin translated in vitro from the indirect-flight-muscle-specific gene Act88F was ADP-ribosylated by C. botulinum C2 toxin and C. perfringens iota toxin. Actin from the R177Q mutant of Act88F translated in vivo was not ADP-ribosylated confirming Arg-177 as the ADP-ribose acceptor. Mutant L176M actin was modified by both toxins, indicating that amino acid 176 of actin does not define the substrate specificity of C. botulinum C2 toxin. Whereas the gene products of various C-terminal mutants of Act88F translated in vitro (E334K, V339I, E364K, G368E, R372H) were substrates for ADP-ribosylation by C. botulinum C2 toxin and by C. perfringens iota toxin, neither toxin modified the N-terminal O-12 deletion mutant.


Toxins ◽  
2017 ◽  
Vol 9 (8) ◽  
pp. 247 ◽  
Author(s):  
Masaya Takehara ◽  
Teruhisa Takagishi ◽  
Soshi Seike ◽  
Masataka Oda ◽  
Yoshihiko Sakaguchi ◽  
...  

2009 ◽  
Vol 77 (12) ◽  
pp. 5593-5601 ◽  
Author(s):  
Hanna Hilger ◽  
Sascha Pust ◽  
Guido von Figura ◽  
Eva Kaiser ◽  
Bradley G. Stiles ◽  
...  

ABSTRACT Mono-ADP ribosylation of actin by bacterial toxins, such as Clostridium perfringens iota or Clostridium botulinum C2 toxins, results in rapid depolymerization of actin filaments and cell rounding. Here we report that treatment of African green monkey kidney (Vero) cells with iota toxin resulted in delayed caspase-dependent death. Unmodified actin did not reappear in toxin-treated cells, and enzyme-active toxin was detectable in the cytosol for at least 24 h. C2 toxin showed comparable, long-lived effects in cells, while a C2 toxin control lacking ADP-ribosyltransferase activity did not induce cell death. To address whether the remarkable stability of the iota and C2 toxins in cytosol was crucial for inducing cell death, we treated cells with C/SpvB, the catalytic domain of Salmonella enterica SpvB. Although C/SpvB also mono-ADP ribosylates actin as do the iota and C2 toxins, cells treated with a cell-permeating C/SpvB fusion toxin became rounded but recovered and remained viable. Moreover, unmodified actin reappeared in these cells, and ADP-ribosyltransferase activity due to C/SpvB was not detectable in the cytosol after 24 h, a result most likely due to degradation of C/SpvB. Repeated application of C/SpvB prevented recovery of cells and reappearance of unmodified actin. In conclusion, a complete but transient ADP ribosylation of actin was not sufficient to trigger apoptosis, implying that long-term stability of actin-ADP-ribosylating toxins, such as iota and C2, in the cytosol is crucial for inducing delayed, caspase-dependent cell death.


2008 ◽  
Vol 76 (10) ◽  
pp. 4600-4608 ◽  
Author(s):  
Karin Heine ◽  
Sascha Pust ◽  
Stefanie Enzenmüller ◽  
Holger Barth

ABSTRACT The binary C2 toxin from Clostridium botulinum mono-ADP-ribosylates G-actin in the cytosol of eukaryotic cells. This modification leads to depolymerization of actin filaments accompanied by cell rounding within 3 h of incubation but does not immediately induce cell death. Here we investigated the long-term responses of mammalian cell lines (HeLa and Vero) following C2 toxin treatment. Cells stayed round even though the toxin was removed from the medium after its internalization into the cells. No unmodified actin reappeared in the C2 toxin-treated cells within 48 h. Despite actin being completely ADP-ribosylated after about 7 h, no obvious decrease in the overall amount of actin was observed for at least 48 h. Therefore, ADP-ribosylation was not a signal for an accelerated degradation of actin in the tested cell lines. C2 toxin treatment resulted in delayed apoptotic cell death that became detectable about 15 to 24 h after toxin application in a portion of the cells. Poly(ADP)-ribosyltransferase 1 (PARP-1) was cleaved in C2 toxin-treated cells, an indication of caspase 3 activation and a hallmark of apoptosis. Furthermore, specific caspase inhibitors prevented C2 toxin-induced apoptosis, implying that caspases 8 and 9 were activated in C2 toxin-treated cells. C2I, the ADP-ribosyltransferase component of the C2 toxin, remained active in the cytosol for at least 48 h, and no extensive degradation of C2I was observed. From our data, we conclude that the long-lived nature of C2I in the host cell cytosol was essential for the nonreversible cytotoxic effect of C2 toxin, resulting in delayed apoptosis of the tested mammalian cells.


Sign in / Sign up

Export Citation Format

Share Document