actin isoforms
Recently Published Documents


TOTAL DOCUMENTS

147
(FIVE YEARS 21)

H-INDEX

27
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Maxime Christie van Zwam ◽  
Willem Bosman ◽  
Wendy van Straaten ◽  
Suzanne Weijers ◽  
Emiel Seta ◽  
...  

Actin plays a central role in many biological processes such as cell division, motility and contractility. In birds and mammals, actin has six, highly conserved isoforms, four of which are primarily present in muscles and two that are ubiquitously expressed across tissues. While each isoform has non-redundant biological functions, we currently lack the tools to investigate the molecular basis for isoform specificity due to their high similarity and the limited possibilities to manipulate actin. To solve this technical challenge, we developed IntAct, an internally tagged actin system to study actin isoform organization in fixed and living cells. For this, we performed a microscopy-based screen for 11 internal actin positions and identified one residue pair that allows for non-disruptive epitope tag integration. Using knockin cell lines with tags into the ubiquitously expressed β-actin, we demonstrate that IntAct actins are properly expressed and that their incorporation into filaments is indistinguishable from wildtype. We further show that IntAct actins can be visualized in living cells by exploiting the nanobody-targeted ALFA tag and that they keep their ability to interact with the actin binding proteins profilin and cofilin. Lastly, we also introduced the tag in the ubiquitously expressed γ-actin and demonstrate that the differential localization observed for actin isoforms remains unaltered for the IntAct actins. Together, our data demonstrate that IntAct is a versatile tool to study actin isoform localization, dynamics and molecular interactions to finally enable the molecular characterization of actin isoforms in biological processes.


2021 ◽  
Vol 32 ◽  
pp. S1366
Author(s):  
V.B. Dugina ◽  
S.D. Panina ◽  
M.V. Novikova ◽  
P.B. Kopnin

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Yuxia Li ◽  
Chaoyang Li ◽  
Qianglin Liu ◽  
Leshan Wang ◽  
Adam X Bao ◽  
...  

In response to myocardial infarction (MI), quiescent cardiac fibroblasts differentiate into myofibroblasts mediating tissue repair in the infarcted area. One of the most widely accepted markers of myofibroblast differentiation is the expression of Acta2 which encodes smooth muscle alpha-actin (SMαA) that is assembled into stress fibers. However, the requirement of Acta2 / SMαA in the myofibroblast differentiation of cardiac fibroblasts and its role in post-MI cardiac repair remained largely unknown. To answer these questions, we generated a tamoxifen-inducible cardiac fibroblast-specific Acta2 knockout mouse line. Surprisingly, mice that lacked Acta2 in cardiac fibroblasts had a normal survival rate after MI. Moreover, Acta2 deletion did not affect the function or overall histology of infarcted hearts. No difference was detected in the proliferation, migration, or contractility between WT and Acta2 -null cardiac myofibroblasts. It was identified that Acta2 -null cardiac myofibroblasts had a normal total filamentous actin level and total actin level. Acta2 deletion caused a unique compensatory increase in the transcription level of Actg2 and an increase in the protein level of sarcomeric actin isoform(s). In addition, the specific muscle actin isoforms that were upregulated in Acta2 -null cardiac myofibroblasts varied between individual cells. Moreover, the formation of stress fibers by cytoplasmic actin isoforms, especially the cytoplasmic gamma-actin, was enhanced in Acta2 -null cardiac myofibroblasts despite their unchanged RNA and protein expression. In conclusion, the deletion of Acta2 does not prevent the myofibroblast differentiation of cardiac fibroblasts or affect the post-MI cardiac repair, and the increased expression and stress fiber formation of non-SMαA actin isoforms and the functional redundancy between actin isoforms are able to compensate for the loss of Acta2 in cardiac myofibroblasts.


2021 ◽  
Author(s):  
Yuxia Li ◽  
Chaoyang Li ◽  
Qianglin Liu ◽  
Leshan Wang ◽  
Adam Bao ◽  
...  

In response to myocardial infarction (MI), quiescent cardiac fibroblasts differentiate into myofibroblasts mediating tissue repair in the infarcted area. One of the most widely accepted markers of myofibroblast differentiation is the expression of Acta2 which encodes smooth muscle alpha-actin (SMαA) that is assembled into stress fibers. However, the requirement of Acta2 in the myofibroblast differentiation of cardiac fibroblasts and its role in post-MI cardiac repair were still not known. To answer these questions, we generated a tamoxifen-inducible cardiac fibroblast-specific Acta2 knockout mouse line. Surprisingly, mice that lacked Acta2 in cardiac fibroblasts had a normal survival rate after MI. Moreover, Acta2 deletion did not affect the function or overall histology of infarcted hearts. No difference was detected in the proliferation, migration, or contractility between WT cardiac fibroblasts and Acta2-null cardiac myofibroblasts. Additional analysis identified that Acta2-null cardiac myofibroblasts had a normal total filamentous actin level and total actin level. Acta2 deletion caused a unique compensatory increase in the transcription level of Actg2 and a possible increase in the protein abundance of cytoplasmic actin isoforms. In conclusion, SMαA stress fibers are not required for myofibroblast differentiation of cardiac fibroblasts or the post-MI cardiac repair, and the increase in the expression of non-SMαA actin isoforms and the functional redundancy between actin isoforms are likely able to compensate for the loss of Acta2 in cardiac myofibroblasts.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2151
Author(s):  
Vera Dugina ◽  
Galina Shagieva ◽  
Mariya Novikova ◽  
Svetlana Lavrushkina ◽  
Olga Sokova ◽  
...  

We have shown previously that two cytoplasmic actin isoforms play different roles in neoplastic cell transformation. Namely, β-cytoplasmic actin acts as a tumor suppressor, whereas γ-cytoplasmic actin enhances malignant features of tumor cells. The distinct participation of each cytoplasmic actin in the cell cycle driving was also observed. The goal of this study was to describe the diverse roles of cytoplasmic actins in the progression of chromosomal instability of MDA-MB-231 basal-like human carcinoma cell line. We performed traditional methods of chromosome visualization, as well as 3D-IF microscopy and western blotting for CENP-A detection/quantification, to investigate chromosome morphology. Downregulation of cytoplasmic actin isoforms alters the phenotype and karyotype of MDA-MB-231 breast cancer cells. Moreover, β-actin depletion leads to the progression of chromosomal instability with endoreduplication and aneuploidy increase. On the contrary, γ-actin downregulation results not only in reduced percentage of mitotic carcinoma cells, but leads to chromosome stability, reduced polyploidy, and aneuploidy.


2021 ◽  
Author(s):  
Micaela Boiero Sanders ◽  
Christopher P. Toret ◽  
Adrien Antkowiak ◽  
Robert C. Robinson ◽  
Alphée Michelot

AbstractA paradox of eukaryotic cells is that while some species assemble a complex actin cytoskeleton from a single ortholog, other species utilize a greater diversity of actin isoforms. The physiological consequences of using different actin isoforms, and the molecular mechanisms by which highly conserved actin isoforms are segregated into distinct networks, are poorly known. Here, we sought to understand how a simple biological system, composed of a unique actin and a limited set of actin-binding proteins, reacts to a switch to heterologous actin expression. Using yeast as a model system and biomimetic assays, we show that such perturbation causes drastic reorganization of the actin cytoskeleton. Our results indicate that defective interaction of a heterologous actin for important regulators of actin assembly limits certain actin assembly pathways while reinforcing others. Expression of two heterologous actin variants, each specialized in assembling a different network, rescues cytoskeletal organization and confers resistance to external perturbation. Hence, while species using a unique actin have homeostatic actin networks, actin assembly pathways in species using several actin isoforms may act more independently.


2020 ◽  
Vol 31 ◽  
pp. S1236
Author(s):  
V. Dugina ◽  
M.V. Novikova ◽  
O. Sokova ◽  
B. Kopnin ◽  
P. Kopnin

2020 ◽  
Vol 85 (9) ◽  
pp. 1072-1081
Author(s):  
G. S. Shagieva ◽  
I. B. Alieva ◽  
C. Chaponnier ◽  
V. B. Dugina

Open Biology ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 200157
Author(s):  
Micaela Boiero Sanders ◽  
Adrien Antkowiak ◽  
Alphée Michelot

The actin cytoskeleton has the particularity of being assembled into many functionally distinct filamentous networks from a common reservoir of monomeric actin. Each of these networks has its own geometrical, dynamical and mechanical properties, because they are capable of recruiting specific families of actin-binding proteins (ABPs), while excluding the others. This review discusses our current understanding of the underlying molecular mechanisms that cells have developed over the course of evolution to segregate ABPs to appropriate actin networks. Segregation of ABPs requires the ability to distinguish actin networks as different substrates for ABPs, which is regulated in three different ways: (1) by the geometrical organization of actin filaments within networks, which promotes or inhibits the accumulation of ABPs; (2) by the identity of the networks' filaments, which results from the decoration of actin filaments with additional proteins such as tropomyosin, from the use of different actin isoforms or from covalent modifications of actin; (3) by the existence of collaborative or competitive binding to actin filaments between two or multiple ABPs. This review highlights that all these effects need to be taken into account to understand the proper localization of ABPs in cells, and discusses what remains to be understood in this field of research.


Sign in / Sign up

Export Citation Format

Share Document