cellular entry
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 49)

H-INDEX

33
(FIVE YEARS 5)

2022 ◽  
Vol 23 (2) ◽  
pp. 796
Author(s):  
Anett Hudák ◽  
Gábor Veres ◽  
Annamária Letoha ◽  
László Szilák ◽  
Tamás Letoha

Emerging SARS-CoV-2 variants pose threats to vaccination campaigns against COVID-19. Being more transmissible than the original virus, the SARS-CoV-2 B.1.617 lineage, named the Delta variant, swept through the world in 2021. The mutations in the Delta’s spike protein shift the protein towards a net positive electrostatic potential. To understand the key molecular drivers of the Delta infection, we investigate the cellular uptake of the Delta spike protein and Delta spike-bearing SARS-CoV-2 pseudoviruses. Specific in vitro modification of ACE2 and syndecan expression enabled us to demonstrate that syndecan-4, the syndecan isoform abundant in the lung, enhances the transmission of the Delta variant by attaching its mutated spike glycoprotein and facilitating its cellular entry. Compared to the wild-type spike, the Delta one shows a higher affinity towards heparan sulfate proteoglycans than towards ACE2. In addition to attachment to the polyanionic heparan sulfate chains, the Delta spike’s molecular interactions with syndecan-4 also involve syndecan-4’s cell-binding domain that mediates cell-to-cell adhesion. Regardless of the complexity of these interactions, exogenously added heparin blocks Delta’s cellular entry as efficiently as syndecan-4 knockdown. Therefore, a profound understanding of the molecular mechanisms underlying Delta infections enables the development of molecularly targeted yet simple strategies to reduce the Delta variant’s spread.


Author(s):  
Richard B. van Breemen ◽  
Ruth N. Muchiri ◽  
Timothy A. Bates ◽  
Jules B. Weinstein ◽  
Hans C. Leier ◽  
...  
Keyword(s):  

2021 ◽  
Vol 8 (12) ◽  
pp. 1996
Author(s):  
Chandan Raybarman ◽  
Surajit Bhattacharjee

Type II transmembrane serine protease (TMPRSS2) is expressed at the cell surface with COVID-19 infection. And COVID-19 infection misuse TMPRSS2 to advance their spread, making this protease potential focuses for intervention in COVID-19 infection. TMPRSS2 blocker may be the appropriate option to arrest cellular entry of COVID-19 by deregulating spike priming. Therefore a trial may be intended to watch the adequacy of aerosolized spraying of TMPRSS2 inhibitors to break the viral entry to the objective cells that empower to break the COVID-19 transmission. Targeting TMPRSS2 through aerosolized TMPRSS2 inhibitor is important to examine a possibly viable remedial technique in the treatment of COVID-19.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Vinesh Dhokia ◽  
Salvador Macip

AbstractRetinoids are a group of vitamin A-related chemicals that are essential to chordate mammals. They regulate a number of basic processes, including embryogenesis and vision. From ingestion to metabolism and the subsequent cellular effects, retinoid levels are tightly regulated in the organism to prevent toxicity. One component of this network, the membrane receptor STRA6, has been shown to be essential in facilitating the cellular entry and exit of retinol. However, recent data suggests that STRA6 may not function merely as a retinoid transporter but also act as a complex signalling hub in its own right, being able to affect cell fate through the integration of retinoid signalling with other key pathways, such as those involving p53, JAK/STAT, Wnt/β catenin and calcium. This may open new therapeutic strategies in diseases like cancer, where these pathways are often compromised. Here, we look at the growing evidence regarding the novel roles of STRA6 beyond its well characterized classic functions.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258750
Author(s):  
Anass Abbad ◽  
Latifa Anga ◽  
Abdellah Faouzi ◽  
Nadia Iounes ◽  
Jalal Nourlil

Dipeptidyl peptidase 4 (DPP4) has been identified as the main receptor of MERS-CoV facilitating its cellular entry and enhancing its viral replication upon the emergence of this novel coronavirus. DPP4 receptor is highly conserved among many species, but the genetic variability among direct binding residues to MERS-CoV restrained its cellular tropism to humans, camels and bats. The occurrence of natural polymorphisms in human DPP4 binding residues is not well characterized. Therefore, we aimed to assess the presence of potential mutations in DPP4 receptor binding domain (RBD) among a population highly exposed to MERS-CoV in Morocco and predict their effect on DPP4 –MERS-CoV binding affinity through a computational approach. DPP4 synonymous and non-synonymous mutations were identified by sanger sequencing, and their effect were modelled by mutation prediction tools, docking and molecular dynamics (MD) simulation to evaluate structural changes in human DPP4 protein bound to MERS-CoV S1 RBD protein. We identified eight mutations, two synonymous mutations (A291 =, R317 =) and six non-synonymous mutations (N229I, K267E, K267N, T288P, L294V, I295L). Through docking and MD simulation techniques, the chimeric DPP4 –MERS-CoV S1 RBD protein complex models carrying one of the identified non-synonymous mutations sustained a stable binding affinity for the complex that might lead to a robust cellular attachment of MERS-CoV except for the DPP4 N229I mutation. The latter is notable for a loss of binding affinity of DPP4 with MERS-CoV S1 RBD that might affect negatively on cellular entry of the virus. It is important to confirm our molecular modelling prediction with in-vitro studies to acquire a broader overview of the effect of these identified mutations.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
James H. Zothantluanga ◽  
Neelutpal Gogoi ◽  
Anshul Shakya ◽  
Dipak Chetia ◽  
H. Lalthanzara

Abstract Background Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) started in 2019 and is still an on-going pandemic. SARS-CoV-2 uses a human protease called furin to aid in cellular entry and its main protease (Mpro) to achieve viral replication. By targeting these proteins, scientists are trying to identify phytoconstituents of medicinal plants as potential therapeutics for COVID-19. Therefore, our study was aimed to identify promising leads as potential inhibitors of SARS-CoV-2 Mpro and furin using the phytocompounds reported to be isolated from Acacia pennata (L.) Willd. Results A total of 29 phytocompounds were reported to be isolated from A. pennata. Molecular docking simulation studies revealed 9 phytocompounds as having the top 5 binding affinities towards SARS-CoV-2 Mpro and furin. Among these phytocompounds, quercetin-3-O-α-L-rhamnopyranoside (C_18), kaempferol 3-O-α-L-rhamnopyranosyl-(1 → 4)-β-D-glucopyranoside (C_4), and isovitexin (C_5) have the highest drug score. However, C_18 and C_4 were not selected for further studies due to bioavailability issues and low synthetic accessibility. Based on binding affinity, molecular properties, drug-likeness, toxicity parameters, ligand interactions, bioavailability, synthetic accessibility, structure–activity relationship, and comparative analysis of our experimental findings with other studies, C_5 was identified as the most promising phytocompound. C_5 interacted with the active site residues of SARS-CoV-2 Mpro (GLU166, ARG188, GLN189) and furin (ASN295, ARG298, HIS364, THR365). Many phytocompounds that interacted with these amino acid residues were reported by other studies as potential inhibitors of SARS-CoV-2 Mpro and furin. The oxygen atom at position 18, the –OH group at position 19, and the 6-C-glucoside were identified as the pharmacophores in isovitexin (also known as apigenin-6-C-glucoside). Other in-silico studies reported apigenin as a potential inhibitor of SARS-CoV-2 Mpro and apigenin-o-7-glucuronide was reported to show stable conformation during MD simulations with SARS-CoV-2 Mpro. Conclusion The present study found isovitexin as the most promising phytocompound to potentially inhibit the cellular entry and viral replication of SARS-CoV-2. We also conclude that compounds having oxygen atom at position 18 (C-ring), –OH group at position 19 (A-ring), and 6-C-glucoside attached to the A-ring at position 3 on a C6–C3–C6 flavonoid scaffold could offer the best alternative to develop new leads against SARS-CoV-2.


2021 ◽  
Vol 9 (3) ◽  
pp. 190-199
Author(s):  
Babatunde Joseph Oso ◽  
Clement Olusola Ogidi

Abstract Background and Objectives Angiotensin-converting enzyme-related carboxypeptidase, SARS-Coronavirus HR2 Domain, and COVID-19 main protease are essential for the cellular entry and replication of coronavirus in the host. This study investigated the putative inhibitory action of peptides form medicinal mushrooms, namely Pseudoplectania nigrella, Russula paludosa, and Clitocybe sinopica, towards selected proteins through computational studies. Materials and Methods The respective physicochemical properties of selected peptides were predicted using ProtParam tool, while the binding modes and binding free energy of selected peptides toward proteins were computed through HawkDock server. The structural flexibility and stability of docked protein–peptide complexes were assessed through iMODS server. Results The peptides showed an optimum binding afinity with the molecular targets; plectasin from P. nigrella showed the highest binding free energy compared to peptides from R. paludosa and C. sinopica. Besides, molecular dynamic simulations showed all fungal-based peptides could influence the flexibility and stability of selected proteins. Conclusion The study revealed fungal-based peptides could be explored as functional modulators of essential proteins that are involved in the cellular entry of coronavirus.


2021 ◽  
Author(s):  
Tina Meischel ◽  
Svenja Fritzlar ◽  
Fernando Villalon-Letelier ◽  
Melkamu B. Tessema ◽  
Andrew G. Brooks ◽  
...  

Interferon-induced transmembrane (IFITM) proteins inhibit a broad range of enveloped viruses by blocking entry into host cells. We used an inducible overexpression system to investigate if IFITM1, IFITM2 and IFITM3 could modulate early and/or late stages of influenza A virus (IAV) or parainfluenza virus (PIV)-3 infection in human A549 airway epithelial cells. IAV and PIV-3 represent respiratory viruses which utilise distinct cellular entry pathways. We verify entry by endocytosis for IAV, whereas PIV-3 infection was consistent with fusion at the plasma membrane. Following induction prior to infection, all three IFITM proteins restricted the percentage of IAV-infected cells at 8 hours post-infection. In contrast, prior induction of IFITM1 and IFITM2 did not inhibit PIV-3 infection, although a modest reduction was observed with IFITM3. siRNA-mediated knockdown of endogenous IFITM1, IFITM2 and IFITM3 expression, in the presence or absence of pre-treatment with type I interferon, resulted in increased IAV, but not PIV-3, infection. This suggests that while all three IFITMs display antiviral activity against IAV, they do not restrict the early stages of PIV-3 infection. IAV and PIV-3 infection culminates in viral egress through budding at the plasma membrane. Inducible expression of IFITM1, IFITM2 or IFITM3 immediately after infection did not impact titres of infectious virus released from IAV or PIV-3 infected cells. Our findings show that IFITM proteins differentially restrict the early stages of infection of two respiratory viruses with distinct cellular entry pathways, but do not influence the late stages of replication for either virus. IMPORTANCE Interferon-induced transmembrane (IFITM) proteins restrict the initial stages of infection for several respiratory viruses, however their potential to modulate the later stages of virus replication has not been explored. In this study we highlight the utility of an inducible overexpression system to assess the impact of IFITM proteins on either early or late stage replication of two respiratory viruses. We demonstrate antiviral activity by IFITM1, IFITM2 and IFITM3 against influenza A virus (IAV) but not parainfluenza virus (PIV)-3 during the early stages of cellular infection. Furthermore, IFITM induction following IAV or PIV-3 infection does not restrict the late stages of replication of either virus. Our findings show that IFITM proteins can differentially restrict the early stages of infection of two viruses with distinct cellular entry pathways, yet do not influence the late stages of replication for either virus.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
D. A. Leach ◽  
A. Mohr ◽  
E. S. Giotis ◽  
E. Cil ◽  
A. M. Isac ◽  
...  

AbstractSARS-CoV-2 attacks various organs, most destructively the lung, and cellular entry requires two host cell surface proteins: ACE2 and TMPRSS2. Downregulation of one or both of these is thus a potential therapeutic approach for COVID-19. TMPRSS2 is a known target of the androgen receptor, a ligand-activated transcription factor; androgen receptor activation increases TMPRSS2 levels in various tissues, most notably prostate. We show here that treatment with the antiandrogen enzalutamide—a well-tolerated drug widely used in advanced prostate cancer—reduces TMPRSS2 levels in human lung cells and in mouse lung. Importantly, antiandrogens significantly reduced SARS-CoV-2 entry and infection in lung cells. In support of this experimental data, analysis of existing datasets shows striking co-expression of AR and TMPRSS2, including in specific lung cell types targeted by SARS-CoV-2. Together, the data presented provides strong evidence to support clinical trials to assess the efficacy of antiandrogens as a treatment option for COVID-19.


Sign in / Sign up

Export Citation Format

Share Document