scholarly journals Two different genes encode fibronectin binding proteins in Staphylococcus aureus. The complete nucleotide sequence and characterization of the second gene

1991 ◽  
Vol 202 (3) ◽  
pp. 1041-1048 ◽  
Author(s):  
Klas JONSSON ◽  
Christer SIGNAS ◽  
Hans-Peter MULLER ◽  
Martin LINDBERG
2003 ◽  
Vol 219 (2) ◽  
pp. 275-283 ◽  
Author(s):  
Dietmar Vybiral ◽  
Marian Takáč ◽  
Martin Loessner ◽  
Angela Witte ◽  
Uwe Ahsen ◽  
...  

2016 ◽  
Vol 161 (8) ◽  
pp. 2317-2320 ◽  
Author(s):  
Kornelia Fillmer ◽  
Scott Adkins ◽  
Patchara Pongam ◽  
Tom D’Elia

2002 ◽  
Vol 70 (7) ◽  
pp. 3865-3873 ◽  
Author(s):  
Mary C. McElroy ◽  
David J. Cain ◽  
Christine Tyrrell ◽  
Timothy J. Foster ◽  
Christopher Haslett

ABSTRACT Fibronectin-binding proteins mediate Staphylococcus aureus internalization into nonphagocytic cells in vitro. We have investigated whether fibronectin-binding proteins are virulence factors in the pathogenesis of pneumonia by using S. aureus strain 8325-4 and isogenic mutants in which fibronectin-binding proteins were either deleted (DU5883) or overexpressed [DU5883(pFnBPA4)]. We first demonstrated that fibronectin-binding proteins mediate S. aureus internalization into alveolar epithelial cells in vitro and that S. aureus internalization into alveolar epithelial cells requires actin rearrangement and protein kinase activity. Second, we established a rat model of S. aureus-induced pneumonia and measured lung injury and bacterial survival at 24 and 96 h postinoculation. S. aureus growth and the extent of lung injury were both increased in rats inoculated with the deletion mutant (DU5883) in comparison with rats inoculated with the wild-type (8325-4) and the fibronectin-binding protein-overexpressing strain DU5883(pFnBPA4) at 24 h postinfection. Morphological evaluation of infected lungs at the light and electron microscopic levels demonstrated that S. aureus was present within neutrophils from both 8325-4- and DU5883-inoculated lungs. Our data suggest that fibronectin-binding protein-mediated internalization into alveolar epithelial cells is not a virulence mechanism in a rat model of pneumonia. Instead, our data suggest that fibronectin-binding proteins decrease the virulence of S. aureus in pneumonia.


1997 ◽  
Vol 41 (5) ◽  
pp. 906-913 ◽  
Author(s):  
C Bisognano ◽  
P E Vaudaux ◽  
D P Lew ◽  
E Y Ng ◽  
D C Hooper

Bacterial adhesion, which plays an important role in Staphylococcus aureus colonization and infection, may be altered by the presence of antibiotics or/and antibiotic resistance determinants. This study evaluated the effect of fluoroquinolone resistance determinants on S. aureus adhesion to solid-phase fibronectin, which is specifically mediated by two surface-located fibronectin-binding proteins. Five isogenic mutants, derived from strain NCTC 8325 and expressing various levels of quinolone resistance, were tested in an in vitro bacterial adhesion assay with polymethylmethacrylate coverslips coated with increasing amounts of fibronectin. These strains contained single or combined mutations in the three major loci contributing to fluoroquinolone resistance, namely, grlA, gyrA, and flqB, which code for altered topoisomerase IV, DNA gyrase, and increased norA-mediated efflux of fluoroquinolones, respectively. Adhesion characteristics of the different quinolone-resistant mutants grown in the absence of fluoroquinolone showed only minor differences from those of parental strains. However, more important changes in adhesion were exhibited by mutants highly resistant to quinolones following their exponential growth in the presence of one-quarter MIC of ciprofloxacin. Increased bacterial adhesion of the highly quinolone-resistant mutants, which contained combined mutations in grlA and gyrA, was associated with and explained by the overexpression of their fibronectin-binding proteins as assessed by Western ligand affinity blotting. These findings contradict the notion that subinhibitory concentrations of antibiotics generally decrease the expression of virulence factors by S. aureus. Perhaps the increased adhesion of S. aureus strains highly resistant to fluoroquinolones contributes in part to that emergence in clinical settings.


Sign in / Sign up

Export Citation Format

Share Document