scholarly journals Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic

2008 ◽  
Vol 10 (12) ◽  
pp. 3388-3403 ◽  
Author(s):  
Blaire Steven ◽  
Wayne H. Pollard ◽  
Charles W. Greer ◽  
Lyle G. Whyte
2005 ◽  
Vol 71 (2) ◽  
pp. 1035-1041 ◽  
Author(s):  
D. F. Juck ◽  
G. Whissell ◽  
B. Steven ◽  
W. Pollard ◽  
C. P. McKay ◽  
...  

ABSTRACT Fluorescent microspheres were applied in a novel fashion during subsurface drilling of permafrost and ground ice in the Canadian High Arctic to monitor the exogenous microbiological contamination of core samples obtained during the drilling process. Prior to each drill run, a concentrated fluorescent microsphere (0.5-μm diameter) solution was applied to the interior surfaces of the drill bit, core catcher, and core tube and allowed to dry. Macroscopic examination in the field demonstrated reliable transfer of the microspheres to core samples, while detailed microscopic examination revealed penetration levels of less than 1 cm from the core exterior. To monitor for microbial contamination during downstream processing of the permafrost and ground ice cores, a Pseudomonas strain expressing the green fluorescent protein (GFP) was painted on the core exterior prior to processing. Contamination of the processed core interiors with the GFP-expressing strain was not detected by culturing the samples or by PCR to detect the gfp marker gene. These methodologies were quick, were easy to apply, and should help to monitor the exogenous microbiological contamination of pristine permafrost and ground ice samples for downstream culture-dependent and culture-independent microbial analyses.


2019 ◽  
Vol 1 (1A) ◽  
Author(s):  
Michael Christopher Macey ◽  
Ben Stephens ◽  
Mark Fox-Powell ◽  
Susanne P. Schwenzer ◽  
Victoria K. Pearson ◽  
...  

Nature ◽  
1990 ◽  
Vol 343 (6259) ◽  
pp. 630-631 ◽  
Author(s):  
R. M. Koerner ◽  
D. A. Fisher

2007 ◽  
Vol 59 (2) ◽  
pp. 513-523 ◽  
Author(s):  
Blaire Steven ◽  
Geoffrey Briggs ◽  
Chris P. McKay ◽  
Wayne H. Pollard ◽  
Charles W. Greer ◽  
...  

1996 ◽  
Vol 33 (5) ◽  
pp. 779-799 ◽  
Author(s):  
John England

A 300 km transect along the east coast of Ellesmere Island fills a major gap in the late Quaternary data base of the Canadian High Arctic. The last glacial maximum (LGM) is marked by prominent moraines and meltwater channels that terminate within 30 km of modern ice margins. Shells in glaciomarine deposits, collected beyond the LGM, indicate deglaciation by more extensive ice prior to 35 ka BP. More than 60 14C dates from glaciomarine sediments provide a chronology for past ice dynamics during the LGM. To the north, while many areas remained ice free due to severe aridity, several glaciers remained in contact with the sea until 7.1 ka BP. Farther south, most glaciers reached the coast and significantly infilled several fiords. This southward increase in glacier extent is due to larger glacial catchment basins and increased precipitation towards storm tracks in northern Baffin Bay. The earliest dates on deglaciation along the transect range from 8.1 to 7.7 ka BP. Initial retreat was controlled by the extent of the marine-based ice margins, which were destabilized by calving. Once landward of the sea, many glaciers stabilized until ~6.5 ka BP. Considerable interfiord variability in glacier dynamics is apparent. A paleoclimatic model is proposed linking past glacier activity in the Canadian High Arctic with the available ice core record. Greenland ice cores show that colder intervals, with depleted δ18O, were associated with reduced precipitation and storminess, which may have constrained ice buildup prior to ~15 ka BP. In contrast, the abrupt rise in δ18O after ~15 ka signals the onset of regional warming associated with increased storminess and precipitation (up to 200%). This may have occasioned a late buildup of High Arctic glaciers, which remained close to the last ice limit well into the Holocene.


2003 ◽  
Vol 29 (2) ◽  
pp. 297-318 ◽  
Author(s):  
Becky Sjare ◽  
Ian Stirling ◽  
Cheryl Spencer

2000 ◽  
Vol 31 (4-5) ◽  
pp. 317-338 ◽  
Author(s):  
Kathy L. Young ◽  
Ming-ko Woo

High Arctic patchy wetlands are ecological oases in a polar desert environment and are vulnerable to climatic warming. At present, understanding of their responses to external factors (climate and terrain) is limited. This study examines a wetland located in a topographic depression maintained by seasonal snowmelt, ground ice melt and lateral inflows. The wetland is located on Cornwallis Island, Nunavut, Canada. Hydrological, climatological and soil observations were made over several summers with different weather conditions. The summers of 1996 and 1997 were cool and wet but the summer of 1998 was warm and dry. The melt in 1996 was rapid due to rain on snow events and only lasted six days. Deeper snow in 1997 prolonged the melt season to 18 days. A shallow snow-cover in 1998 and early melt depleted the snow by early June. Surface, groundwater and storage fluctuations in the wetland were dictated by snowmelt, rainfall, evaporation loss from the wetland and lateral inputs which in turn were controlled by the melting of the late-lying snow storage in the catchment. Soil factors influence the spatial variations in ground thaw which affects the surface and subsurface flow. Streamflow response of the wetland reflects a nival regime and augmentation of streamflow thoughout the summer season in all three years is supported by multiple water sources: ground ice melt and suprapermafrost water from a large late-lying snowpack. Overall, this study suggests that the survival of some patchy wetlands depends on their interaction with the surrounding basin, with a dependency probably being more important during warm and dry seasons.


Sign in / Sign up

Export Citation Format

Share Document