Estimation of Mediterranean forest transpiration and photosynthesis through the use of an ecosystem simulation model driven by remotely sensed data

2004 ◽  
Vol 13 (4) ◽  
pp. 371-380 ◽  
Author(s):  
Silvia Anselmi ◽  
Marta Chiesi ◽  
Monica Giannini ◽  
Fausto Manes ◽  
Fabio Maselli
2011 ◽  
Vol 42 (5) ◽  
pp. 338-355 ◽  
Author(s):  
Luis Samaniego ◽  
Rohini Kumar ◽  
Conrad Jackisch

The goal of this study was to assess the feasibility of using Tropical Rainfall Measuring Mission (TRMM) and Moderate Resolution Imaging Spectroradiometer (MODIS) products to drive a mesoscale hydrologic model (mHM) in a poorly gauged basin. Other remotely sensed products such as LandSat and Shuttle Radar Topography Mission (SRTM) were also used to complement the local geoinformation. For this purpose, three data blending techniques that combine satellite with in situ observations were implemented and evaluated in the Mod basin (512 km2) in India. The climate of the basin is semi-arid and monsoon-dominated. The rainfall gauging network comprised six stations with daily records spanning 9 years. Daily discharge time series was only 4 years long and incomplete. Lumped and distributed versions of mHM were evaluated. Parameters of the lumped version were obtained through calibration. A multiscale regionalization technique was used to parameterize the distributed version using global parameters from other gauged basins. Both mHM versions were evaluated during six monsoon seasons. Results of numerical experiments indicated that driving mHM with satellite-based products is possible and promising. The distributed model with regionalized parameters was at least 20% more efficient than that of its lumped version. Initialization conditions must be carefully considered when the model is only driven by remotely sensed inputs.


Author(s):  
Nikifor Ostanin ◽  
Nikifor Ostanin

Coastal zone of the Eastern Gulf of Finland is subjected to essential natural and anthropogenic impact. The processes of abrasion and accumulation are predominant. While some coastal protection structures are old and ruined the problem of monitoring and coastal management is actual. Remotely sensed data is important component of geospatial information for coastal environment research. Rapid development of modern satellite remote sensing techniques and data processing algorithms made this data essential for monitoring and management. Multispectral imagers of modern high resolution satellites make it possible to produce advanced image processing, such as relative water depths estimation, sea-bottom classification and detection of changes in shallow water environment. In the framework of the project of development of new coast protection plan for the Kurortny District of St.-Petersburg a series of archival and modern satellite images were collected and analyzed. As a result several schemes of underwater parts of coastal zone and schemes of relative bathymetry for the key areas were produced. The comparative analysis of multi-temporal images allow us to reveal trends of environmental changes in the study areas. This information, compared with field observations, shows that remotely sensed data is useful and efficient for geospatial planning and development of new coast protection scheme.


Sign in / Sign up

Export Citation Format

Share Document