THE OPTIMAL CLASSIFICATION RULE FOR EXPONENTIAL POPULATIONS

1993 ◽  
Vol 35 (2) ◽  
pp. 185-194 ◽  
Author(s):  
O. Sola Adegboye
2005 ◽  
Vol 135 (2) ◽  
pp. 339-356 ◽  
Author(s):  
David Conde ◽  
Miguel A. Fernández ◽  
Bonifacio Salvador

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tristan Mary-Huard ◽  
Vittorio Perduca ◽  
Marie-Laure Martin-Magniette ◽  
Gilles Blanchard

Abstract In the context of finite mixture models one considers the problem of classifying as many observations as possible in the classes of interest while controlling the classification error rate in these same classes. Similar to what is done in the framework of statistical test theory, different type I and type II-like classification error rates can be defined, along with their associated optimal rules, where optimality is defined as minimizing type II error rate while controlling type I error rate at some nominal level. It is first shown that finding an optimal classification rule boils down to searching an optimal region in the observation space where to apply the classical Maximum A Posteriori (MAP) rule. Depending on the misclassification rate to be controlled, the shape of the optimal region is provided, along with a heuristic to compute the optimal classification rule in practice. In particular, a multiclass FDR-like optimal rule is defined and compared to the thresholded MAP rules that is used in most applications. It is shown on both simulated and real datasets that the FDR-like optimal rule may be significantly less conservative than the thresholded MAP rule.


Author(s):  
Charles A. Doan ◽  
Ronaldo Vigo

Abstract. Several empirical investigations have explored whether observers prefer to sort sets of multidimensional stimuli into groups by employing one-dimensional or family-resemblance strategies. Although one-dimensional sorting strategies have been the prevalent finding for these unsupervised classification paradigms, several researchers have provided evidence that the choice of strategy may depend on the particular demands of the task. To account for this disparity, we propose that observers extract relational patterns from stimulus sets that facilitate the development of optimal classification strategies for relegating category membership. We conducted a novel constrained categorization experiment to empirically test this hypothesis by instructing participants to either add or remove objects from presented categorical stimuli. We employed generalized representational information theory (GRIT; Vigo, 2011b , 2013a , 2014 ) and its associated formal models to predict and explain how human beings chose to modify these categorical stimuli. Additionally, we compared model performance to predictions made by a leading prototypicality measure in the literature.


2002 ◽  
Vol 7 (1) ◽  
pp. 31-42
Author(s):  
J. Šaltytė ◽  
K. Dučinskas

The Bayesian classification rule used for the classification of the observations of the (second-order) stationary Gaussian random fields with different means and common factorised covariance matrices is investigated. The influence of the observed data augmentation to the Bayesian risk is examined for three different nonlinear widely applicable spatial correlation models. The explicit expression of the Bayesian risk for the classification of augmented data is derived. Numerical comparison of these models by the variability of Bayesian risk in case of the first-order neighbourhood scheme is performed.


2001 ◽  
Vol 6 (2) ◽  
pp. 15-28 ◽  
Author(s):  
K. Dučinskas ◽  
J. Šaltytė

The problem of classification of the realisation of the stationary univariate Gaussian random field into one of two populations with different means and different factorised covariance matrices is considered. In such a case optimal classification rule in the sense of minimum probability of misclassification is associated with non-linear (quadratic) discriminant function. Unknown means and the covariance matrices of the feature vector components are estimated from spatially correlated training samples using the maximum likelihood approach and assuming spatial correlations to be known. Explicit formula of Bayes error rate and the first-order asymptotic expansion of the expected error rate associated with quadratic plug-in discriminant function are presented. A set of numerical calculations for the spherical spatial correlation function is performed and two different spatial sampling designs are compared.


2021 ◽  
Vol 11 (6) ◽  
pp. 2511
Author(s):  
Julian Hatwell ◽  
Mohamed Medhat Gaber ◽  
R. Muhammad Atif Azad

This research presents Gradient Boosted Tree High Importance Path Snippets (gbt-HIPS), a novel, heuristic method for explaining gradient boosted tree (GBT) classification models by extracting a single classification rule (CR) from the ensemble of decision trees that make up the GBT model. This CR contains the most statistically important boundary values of the input space as antecedent terms. The CR represents a hyper-rectangle of the input space inside which the GBT model is, very reliably, classifying all instances with the same class label as the explanandum instance. In a benchmark test using nine data sets and five competing state-of-the-art methods, gbt-HIPS offered the best trade-off between coverage (0.16–0.75) and precision (0.85–0.98). Unlike competing methods, gbt-HIPS is also demonstrably guarded against under- and over-fitting. A further distinguishing feature of our method is that, unlike much prior work, our explanations also provide counterfactual detail in accordance with widely accepted recommendations for what makes a good explanation.


Sign in / Sign up

Export Citation Format

Share Document