Statistical Inference in Context Specific Interaction Models for Contingency Tables

2004 ◽  
Vol 31 (1) ◽  
pp. 143-158 ◽  
Author(s):  
Soren Hojsgaard
2012 ◽  
Vol 71 (4) ◽  
pp. 407-416 ◽  
Author(s):  
María Hernández-Carretero ◽  
Jørgen Carling

In recent years, tens of thousands of young Africans have left the shores of Senegal and other West African countries in small boats headed for Spain's Canary Islands. Most have spent a week or more at sea, and unknown numbers have died in the attempt. Given the danger of the journey, we ask how it could become a large-scale social phenomenon. The analysis focuses on how prospective migrants assess and relate to the risks of migration. We show that risk taking is shaped by context-specific interaction of disparate factors. These include economic obstacles to reaching social adulthood, notions of masculinity, pride and honor, and religion, in the form of sufi Islam.


2019 ◽  
Author(s):  
Juan F Macias-Velasco ◽  
Celine L. St. Pierre ◽  
Jessica P Wayhart ◽  
Li Yin ◽  
Larry Spears ◽  
...  

ABSTRACTParent-of-origin effects (POE) are unexpectedly common in complex traits, including metabolic and neurological diseases. POE can also be modified by the environment, but the architecture of these gene-by-environmental effects on phenotypes remains to be unraveled. Previously, quantitative trait loci (QTL) showing context-specific POE on metabolic traits were mapped in the F16 generation of an advanced intercross between LG/J and SM/J inbred mice. However, these QTL were not enriched for known imprinted genes, suggesting another mechanism is needed to explain these POE phenomena. Here, we use a simple yet powerful F1 reciprocal cross model to test the hypothesis that non-imprinted genes can generate complex POE on metabolic traits through genetic interactions with imprinted genes. Male and female mice from a F1 reciprocal cross of LG/J and SM/J strains were fed either high or low fat diets. We generated expression profiles from three metabolically-relevant tissues: hypothalamus, white adipose, and liver. We identified two classes of parent-of-origin expression biases: genes showing parent-of-origin-dependent allele-specific expression and biallelic genes that are differentially expressed by reciprocal cross. POE patterns of both gene classes are highly tissue-and context-specific, sometimes occurring only in one sex and/or diet cohort in a particular tissue. We then constructed tissue-specific interaction networks among genes from these two classes of POE. A key subset of gene pairs show significant epistasis in the F16 LG/J x SM/J advanced intercross data in cases where the biallelic gene fell within a previously-identified metabolic POE QTL interval. We highlight one such interaction in adipose, between Nnat and Mogat1, which associates with POE on multiple adiposity traits. Both genes localize to the endoplasmic reticulum of adipocytes and play a role in adipogenesis. Additionally, expression of both genes is significantly correlated in human visceral adipose tissue. The genes and networks we present here represent a set of actionable interacting candidates that can be probed to further identify the machinery driving POE on complex traits.


Science ◽  
2021 ◽  
Vol 372 (6549) ◽  
pp. eabf6548
Author(s):  
Youngdae Gwon ◽  
Brian A. Maxwell ◽  
Regina-Maria Kolaitis ◽  
Peipei Zhang ◽  
Hong Joo Kim ◽  
...  

Stress granules are dynamic, reversible condensates composed of RNA and protein that assemble in eukaryotic cells in response to a variety of stressors and are normally disassembled after stress is removed. The composition and assembly of stress granules is well understood, but little is known about the mechanisms that govern disassembly. Impaired disassembly has been implicated in some diseases including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Using cultured human cells, we found that stress granule disassembly was context-dependent: Specifically in the setting of heat shock, disassembly required ubiquitination of G3BP1, the central protein within the stress granule RNA-protein network. We found that ubiquitinated G3BP1 interacted with the endoplasmic reticulum–associated protein FAF2, which engaged the ubiquitin-dependent segregase p97/VCP (valosin-containing protein). Thus, targeting of G3BP1 weakened the stress granule–specific interaction network, resulting in granule disassembly.


2019 ◽  
Vol 1 (4) ◽  
pp. 181-190 ◽  
Author(s):  
Matteo Manica ◽  
Roland Mathis ◽  
Joris Cadow ◽  
María Rodríguez Martínez

2020 ◽  
Author(s):  
Jennifer Wilson ◽  
Alessio Gravina ◽  
Kevin Grimes

With high drug attrition, interaction network methods are increasingly attractive as quick and inexpensive methods for prediction of drug safety and efficacy effects when a drug pathway is unknown. However, these methods suffer from high false positive rates for selecting drug phenotypic effects, their performance is often no better than random (AUROC ~0.5), and this limits the use of network methods in regulatory and industrial decision making. In contrast to many network engineering approaches that apply mathematical thresholds to discover phenotype associations, we hypothesized that interaction networks associated with true positive drug phenotypes are context specific. We tested this hypothesis on 16 designated medical event (DMEs) phenotypes which are a subset of adverse events that are of upmost concern to FDA review using a novel data set extracted from drug labels. We demonstrated that context-specific interactions (CSIs) distinguished true from false positive DMEs with an 50% improvement over non-context-specific approaches (AUROC 0.77 compared to 0.51). By reducing false positives, CSI analysis has the potential to advance network techniques to influence decision making in regulatory and industry settings.


1980 ◽  
Vol 8 (3) ◽  
pp. 522-539 ◽  
Author(s):  
J. N. Darroch ◽  
S. L. Lauritzen ◽  
T. P. Speed

Sign in / Sign up

Export Citation Format

Share Document