scholarly journals Structural learning with time-varying components: tracking the cross-section of financial time series

Author(s):  
Makram Talih ◽  
Nicolas Hengartner
2021 ◽  
Vol 2021 ◽  
pp. 1-24
Author(s):  
Sun Yapeng ◽  
Peng Hui ◽  
Xie Wenbiao

The non-linear market microstructure (MM) model for financial time series modeling is a flexible stochastic volatility model with demand surplus and market liquidity. The estimation of the model is difficult, since the unobservable surplus demand is a time-varying stochastic variable in the return equation, and the market liquidity arises both in the mean term and in the variance term of the return equation in the MM model. A fast and efficient Markov Chain Monte Carlo (MCMC) approach based on an efficient simulation smoother algorithm and an acceptance-rejection Metropolis–Hastings algorithm is designed to estimate the non-linear MM model. Since the simulation smoother algorithm makes use of the band diagonal structure and positive definition of Hessian matrix of the logarithmic density, it can quickly draw the market liquidity. In addition, we discuss the MM model with Student-t heavy tail distribution that can be utilized to address the presence of outliers in typical financial time series. Using the presented modeling method to make analysis of daily income of the S&P 500 index through the point forecast and the density forecast, we find clear support for time-varying volatility, volatility feedback effect, market microstructure theory, and Student-t heavy tails in the financial time series. Through this method, one can use the estimated market liquidity and surplus demand which is much smoother than the strong stochastic return process to assist the transaction decision making in the financial market.


Author(s):  
Lu Bai ◽  
Lixin Cui ◽  
Yue Wang ◽  
Yuhang Jiao ◽  
Edwin R. Hancock

Network representations are powerful tools for the analysis of time-varying financial complex systems consisting of multiple co-evolving financial time series, e.g., stock prices, etc. In this work, we develop a new kernel-based similarity measure between dynamic time-varying financial networks. Our ideas is to transform each original financial network into quantum-based entropy time series and compute the similarity measure based on the classical dynamic time warping framework associated with the entropy time series. The proposed method bridges the gap between graph kernels and the classical dynamic time warping framework for multiple financial time series analysis. Experiments on time-varying networks abstracted from financial time series of New York Stock Exchange (NYSE) database demonstrate that our approach can effectively discriminate the abrupt structural changes in terms of the extreme financial events.


2016 ◽  
Vol 48 (A) ◽  
pp. 159-180
Author(s):  
Rüdiger Kiesel ◽  
Magda Mroz ◽  
Ulrich Stadtmüller

AbstractWe perform an analysis of the potential time inhomogeneity in the dependence between multiple financial time series. To this end, we use the framework of copula theory and tackle the question of whether dependencies in such a case can be assumed constant throughout time or rather have to be modeled in a time-inhomogeneous way. We focus on parametric copula models and suitable inference techniques in the context of a special copula-based multivariate time series model. A recent result due to Chan et al. (2009) is used to derive the joint limiting distribution of local maximum-likelihood estimators on overlapping samples. By restricting the overlap to be fixed, we establish the limiting law of the maximum of the estimator series. Based on the limiting distributions, we develop statistical homogeneity tests, and investigate their local power properties. A Monte Carlo simulation study demonstrates that bootstrapped variance estimates are needed in finite samples. Empirical analyses on real-world financial data finally confirm that time-varying parameters are an exception rather than the rule.


Sign in / Sign up

Export Citation Format

Share Document