scholarly journals Changes in conformation of myosin heads during the development of isometric contraction and rapid shortening in single frog muscle fibres

1999 ◽  
Vol 514 (2) ◽  
pp. 305-312 ◽  
Author(s):  
Gabriella Piazzesi ◽  
Massimo Reconditi ◽  
Ian Dobbie ◽  
Marco Linari ◽  
Peter Boesecke ◽  
...  
1985 ◽  
Vol 115 (1) ◽  
pp. 79-87 ◽  
Author(s):  
G. A. Cavagna ◽  
M. Mazzanti ◽  
N. C. Heglund ◽  
G. Citterio

In frog muscle fibres, tetanically stimulated at a sarcomere length of about 2 micron, stretched at a velocity of 1 lengths-1 and released against a force equal to the maximum isometric, P0, a phase of rapid isotonic shortening takes place after release. As the amplitude of the stretch is increased from 1.5 to 9% of the initial length: (1) the amount of rapid isotonic shortening increases up to 9–10 nm per half sarcomere and (2) the stiffness of the fibre (an indication of the number of bridges attached) decreases to a value about equal to that measured during an isometric contraction. If a 5–10 ms delay is left between the end of stretch and release, the amount of rapid isotonic shortening increases to about 12 nm hs-1. A 300–500 ms delay, however, results in a decrease in rapid isotonic shortening to about 5 nm hs-1 and also results in a velocity transients against P0 that are similar to those described during release from a state of isometric contraction. It is concluded that the force attained after large, fast stretches is due to a greater force developed by each bridge and not to a greater number of bridges. After the elastic recoil (when the force is suddenly reduced to P0), these strained bridges are able to shorten by about 12 nm hs-1, suggesting that, during and immediately after stretching, they are charged to levels of potential energy greater than those attained in an isometric contraction.


1966 ◽  
Vol 183 (1) ◽  
pp. 152-166 ◽  
Author(s):  
B. Frankenhaeuser ◽  
B. D. Lindley ◽  
R. S. Smith

In the frog muscle, ext. long. dig. IV, there are two or three spindle systems. Each consists of a bundle of intrafusal muscle fibres with two, three or four discrete encapsulated sensory regions distributed in mechanical series along it. A sensory region is usually comprised of the coiled branches of one afferent axon. These embrace the intrafusal fibres and ultimately form long fine varicose endings on or near them. The intrafusal striations appear to be lost for a short distance within the sensory region, and in this region the intrafusal fibre nuclei crowd together. The ‘small’ extrafusal efferents break up into trusses of fine unmyelinated axons and terminate as ‘grape’ end-plates, several of which can occur on the same muscle fibre. This is the ‘tonic’ system. The ‘large’ extrafusal efferents terminate as ‘Endbiischel’ end-plates on muscle fibres not supplied by grape endings. This is the ‘twitch’ system. Both ‘grape' and ‘twitch’ end-plates occur on the intrafusal bundle (probably on separate fibres) between the sensory regions. They are supplied by branches of ‘small’ or ‘large’ axons respectively, which also innervate extrafusal fibres. Thus like the extrafusals the intrafusal bundle is composed of ‘tonic’ and ‘twitch’ muscle fibres. This situation contrasts with that of the mammal, where extrafusals are exclusively ‘twitch’ fibres and intrafusals ‘tonic’.


2006 ◽  
Vol 578 (1) ◽  
pp. 337-346 ◽  
Author(s):  
Barbara Colombini ◽  
Maria Angela Bagni ◽  
Giovanni Cecchi ◽  
Peter John Griffiths
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document