scholarly journals Effect of intracellular pH on force and heat production in isometric contraction of frog muscle fibres.

1988 ◽  
Vol 396 (1) ◽  
pp. 93-104 ◽  
Author(s):  
N A Curtin ◽  
K Kometani ◽  
R C Woledge
1985 ◽  
Vol 115 (1) ◽  
pp. 79-87 ◽  
Author(s):  
G. A. Cavagna ◽  
M. Mazzanti ◽  
N. C. Heglund ◽  
G. Citterio

In frog muscle fibres, tetanically stimulated at a sarcomere length of about 2 micron, stretched at a velocity of 1 lengths-1 and released against a force equal to the maximum isometric, P0, a phase of rapid isotonic shortening takes place after release. As the amplitude of the stretch is increased from 1.5 to 9% of the initial length: (1) the amount of rapid isotonic shortening increases up to 9–10 nm per half sarcomere and (2) the stiffness of the fibre (an indication of the number of bridges attached) decreases to a value about equal to that measured during an isometric contraction. If a 5–10 ms delay is left between the end of stretch and release, the amount of rapid isotonic shortening increases to about 12 nm hs-1. A 300–500 ms delay, however, results in a decrease in rapid isotonic shortening to about 5 nm hs-1 and also results in a velocity transients against P0 that are similar to those described during release from a state of isometric contraction. It is concluded that the force attained after large, fast stretches is due to a greater force developed by each bridge and not to a greater number of bridges. After the elastic recoil (when the force is suddenly reduced to P0), these strained bridges are able to shorten by about 12 nm hs-1, suggesting that, during and immediately after stretching, they are charged to levels of potential energy greater than those attained in an isometric contraction.


1999 ◽  
Vol 514 (2) ◽  
pp. 305-312 ◽  
Author(s):  
Gabriella Piazzesi ◽  
Massimo Reconditi ◽  
Ian Dobbie ◽  
Marco Linari ◽  
Peter Boesecke ◽  
...  

1966 ◽  
Vol 183 (1) ◽  
pp. 152-166 ◽  
Author(s):  
B. Frankenhaeuser ◽  
B. D. Lindley ◽  
R. S. Smith

2002 ◽  
Vol 93 (5) ◽  
pp. 1567-1582 ◽  
Author(s):  
David R. Bassett

Beginning in 1910, A. V. Hill performed careful experiments on the time course of heat production in isolated frog muscle. His research paralleled that of the German biochemist Otto Meyerhof, who measured the changes in muscle glycogen and lactate during contractions and recovery. For their work in discovering the distinction between aerobic and anaerobic metabolism, Hill and Meyerhof were jointly awarded the 1922 Nobel Prize for Physiology or Medicine. Because of Hill's interest in athletics, he sought to apply the concepts discovered in isolated frog muscle to the exercising human. Hill and his colleagues made measurements of O2 consumption on themselves and other subjects running around an 85-m grass track. In the process of this work, they defined the terms “maximum O2 intake,” “O2requirement,” and “steady state of exercise.” Other contributions of Hill include his discoveries of heat production in nerve, the series elastic component, and the force-velocity equation in muscle. Around the time of World War II, Hill was a leading figure in the Academic Assistance Council, which helped Jewish scientists fleeing Nazi Germany to relocate in the West. He served as a member of the British Parliament from 1940 to 1945 and as a scientific advisor to India. Hill's vision and enthusiasm attracted many scientists to the field of exercise physiology, and he pointed the way toward many of the physiological adaptations that occur with physical training.


1988 ◽  
Vol 66 (12) ◽  
pp. 1560-1564 ◽  
Author(s):  
Y. E. Allard

Intracellular pH (pHi, measured with H+-selective microelectrodes, in quiescent frog sartorius muscle fibres was 7.29 ± 0.09 (n = 13). Frog muscle fibres were superfused with a modified Ringer solution containing 30 mM HEPES buffer, at extracellular pH (pHo) 7.35. Intracellular pH decreased to 6.45 ± 0.14 (n = 13) following replacement of 30 mM NaCl with sodium lactate (30 mM MES, pHo 6.20). Intracellular pH recovery, upon removal of external lactic acid, depended on the buffer concentration of the modified Ringer solution. The measured values of the pHi recovery rates was 0.06 ± 0.01 ΔpHi/min (n = 5) in 3 mM HEPES and was 0.18 ± 0.06 ΔpHi/min (n = 13) in 30 mM HEPES, pHo 7.35. The Na+–H+ exchange inhibitor amiloride (2 mM) slightly reduced pHi recovery rate. The results indicate that the net proton efflux from lactic acidotic frog skeletal muscle is mainly by lactic acid efflux and is limited by the transmembrane pH gradient which, in turn, depends on the extracellular buffer capacity in the diffusion limited space around the muscle fibres.


Sign in / Sign up

Export Citation Format

Share Document