OESTROGENS IN THE LONG-DAY PLANTS HYOSCYAMUS NIGER AND SALVIA SPLENDENS GROWN UNDER INDUCTIVE AND NON-INDUCTIVE LIGHT CONDITIONS

1972 ◽  
Vol 71 (1) ◽  
pp. 129-134 ◽  
Author(s):  
JAN KOPCEWICZ
2014 ◽  
Vol 52 (1) ◽  
pp. 71-75
Author(s):  
Jan Kopcewicz ◽  
Gabriela Centkowska

Gibberellins (GA<sub>4+7</sub>) and gibberellin-like substances isolated from generatively induced black henbane (<em>Hyoscyamus niger</> L.) bring about the growth of shoots and a partial differentiation of axillary meristem in black henbane plants grown under non-inductive light conditions. Long-lasting application of gibberellins, however, did not result in full development of flowers in the majority of the plants investigated. Thus, it seems, that gibberellins are not specific flowering hormones in black henbane - a long-day plant.


2014 ◽  
Vol 51 (1) ◽  
pp. 51-58
Author(s):  
Jan Kopcewicz ◽  
Gabriela Centkowska

Night-breaks caused both stimulated shoot growth and caused formation of flowers as well as a general increase in the content of phytohormones in leaves of the long-day plant <em>Hyoscyamus niger</em> L. At the time of flower formation in night-break treated plants, new gibberellin-like substances also appear. The results show that night-breaks cause similar changes in the phytohormones content as a long inductive photoperiod. It may be assumed that independently of the way of induction, the generative differentiation of long-day plants is always accompanied by a general increase in the amount of endogenous hormones and the appearance of new gibberellins. These results suggest the possibility of a morphogenetic role of hormones, especially gibberellins, in the phenomena of flower formation and differentiation.


1982 ◽  
Vol 70 (3) ◽  
pp. 898-900 ◽  
Author(s):  
Robert J. Downs ◽  
Judith F. Thomas
Keyword(s):  

1981 ◽  
Vol 59 (3) ◽  
pp. 388-391 ◽  
Author(s):  
J. A. Teeri ◽  
S. J. Tonsor

A population of Saxifraga rivularis L. collected at Truelove Lowland, Devon Island, N.W.T., Canada (75°41′ N) exhibits a photoperiodic control of flowering in controlled environment chambers. The plants respond in a manner typical of long-day plants with flowering inhibited by either a 6-h daily dark period, or by a 6-h daily low intensity irradiance regime of incandescent light. The inhibition of flowering by 6 h day−1 of incandescent light does not occur if the incandescent light is given in twelve 0.5-h doses, each followed by 1 h of red-rich high intensity irradiance.


Sign in / Sign up

Export Citation Format

Share Document