scholarly journals Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture

1996 ◽  
Vol 133 (2) ◽  
pp. 273-280 ◽  
Author(s):  
B. BAGO ◽  
H. VIERHEILIG ◽  
Y. PICHÉ ◽  
C. AZCÓN-AGUILAR
2004 ◽  
Vol 50 (4) ◽  
pp. 251-260 ◽  
Author(s):  
Jean-Patrick Toussaint ◽  
Marc St-Arnaud ◽  
Christiane Charest

Nitrogen metabolism was examined in monoxenic cultures of carrot roots (Daucus carota L.) colonized with the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith. Glutamine synthetase and glutamate dehydrogenase activities were significantly increased in mycorrhizal roots for which only the extraradical mycelium had exclusive access to NH4NO3 in a distinct hyphal compartment inaccessible to the roots. This was in comparison with the water controls but was similar to the enzyme activities of non-arbuscular-mycorrhizal (non-AM) roots that had direct access to NH4NO3. In addition, glutamate dehydrogenase activity was significantly enhanced in AM roots compared with non-AM roots. Carrot roots took up 15NH4+ more efficiently than 15NO3–, and the extraradical hyphae transfered 15NH4+ to host roots from the hyphal compartment but did not transfer 15NO3–. The extraradical mycelium was shown, for the first time, to have a different glutamine synthetase monomer than roots. Our overall results highlight the active role of AM fungi in nitrogen uptake, transfer, and assimilation in their symbiotic root association.Key words: arbuscular mycorrhizal fungus, Ri T-DNA carrot roots, in vitro root-organ culture, nitrogen metabolism.


2008 ◽  
Vol 54 (2) ◽  
pp. 103-110 ◽  
Author(s):  
Manuel González-Guerrero ◽  
Lewis H. Melville ◽  
Nuria Ferrol ◽  
John N.A. Lott ◽  
Concepción Azcón-Aguilar ◽  
...  

Arbuscular mycorrhizal fungi, obligate symbionts of most plant species, are able to accumulate heavy metals, thereby, protecting plants from metal toxicity. In this study, the ultrastructural localization of Zn, Cu, and Cd in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic cultures was investigated. Zinc, Cu, or Cd was applied to the extraradical mycelium to final concentrations of 7.5, 5.0, or 0.45 mmol/L, respectively. Samples were collected at time 0, 8 h, and 7 days after metal application and were prepared for rapid freezing and freeze substitution. Metal content in different subcellular locations (wall, cytoplasm, and vacuoles), both in hyphae and spores, was determined by energy-dispersive X-ray spectroscopy. In all treatments and fungal structures analysed, heavy metals accumulated mainly in the fungal cell wall and in the vacuoles, while minor changes in metal concentrations were detected in the cytoplasm. Incorporation of Zn into the fungus occurred during the first 8 h after metal addition with no subsequent accumulation. On the other hand, Cu steadily accumulated in the spore vacuoles over time, whereas Cd steadily accumulated in the hyphal vacuoles. These results suggest that binding of metals to the cell walls and compartmentalization in vacuoles may be essential mechanisms for metal detoxification.


2012 ◽  
Vol 116 (6) ◽  
pp. 729-735 ◽  
Author(s):  
Laura Fernández Bidondo ◽  
Mariana Pergola ◽  
Vanesa Silvani ◽  
Roxana Colombo ◽  
Josefina Bompadre ◽  
...  

2012 ◽  
Vol 49 (4) ◽  
pp. 313-321 ◽  
Author(s):  
Kinga A. Sędzielewska ◽  
Katja Vetter ◽  
Rüdiger Bode ◽  
Keith Baronian ◽  
Roland Watzke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document