Contrasting impacts of climate-driven flowering phenology on changes in alien and native plant species distributions

2010 ◽  
Vol 189 (1) ◽  
pp. 272-281 ◽  
Author(s):  
Philip E. Hulme
Author(s):  
Sylvia Haider ◽  
Jonas Lembrechts ◽  
Keith McDougall ◽  
Anibal Pauchard ◽  
Jake M. Alexander ◽  
...  

Climate change and other global change drivers threaten plant diversity in mountains worldwide. A widely documented response to such environmental modifications is for plant species to change their elevational ranges. Range shifts are often idiosyncratic and difficult to generalize, partly due to variation in sampling methods. There is thus a need for a standardized monitoring strategy that can be applied across mountain regions to assess distribution changes and community turnover of native and non-native plant species over space and time. Here, we present a conceptually intuitive and standardized protocol developed by the Mountain Invasion Research Network (MIREN) to systematically quantify global patterns of native and non-native species distributions along elevation gradients and shifts arising from interactive effects of climate change and human disturbance. Usually repeated every five years, surveys consist of 20 sample sites located at equal elevation increments along three replicate roads per sampling region. At each site, three plots extend from the side of a mountain road into surrounding natural vegetation. The protocol has been successfully used in 18 regions worldwide from 2007 to present. Analyses of one point in time already generated some salient results, and revealed region-specific elevational patterns of native plant species richness, but a globally consistent elevational decline in non-native species richness. Non-native plants were also more abundant directly adjacent to road edges, suggesting that disturbed roadsides serve as a vector for invasions into mountains. From the upcoming analyses of time series even more exciting results especially about range shifts can be expected. Implementing the protocol in more mountain regions globally would help to generate a more complete picture of how global change alters species distributions. This would inform conservation policy in mountain ecosystems, where some conservation policies remain poorly implemented.


2015 ◽  
Vol 16 (2) ◽  
pp. 87-95 ◽  
Author(s):  
N. Grant-Hoffman ◽  
S. Parr ◽  
T. Blanke

2017 ◽  
Vol 18 (3) ◽  
pp. 227-234
Author(s):  
Jessica D Lubell ◽  
Bryan Connolly ◽  
Kristina N Jones

Rhodora ◽  
10.3119/18-11 ◽  
2019 ◽  
Vol 121 (987) ◽  
pp. 159
Author(s):  
Adam J. Ramsey ◽  
Steven M. Ballou ◽  
Jennifer R. Mandel

Oecologia ◽  
2015 ◽  
Vol 180 (2) ◽  
pp. 507-517 ◽  
Author(s):  
Tim Engelkes ◽  
Annelein Meisner ◽  
Elly Morriën ◽  
Olga Kostenko ◽  
Wim H. Van der Putten ◽  
...  

Limnology ◽  
2021 ◽  
Author(s):  
Viviane Caetano Firmino ◽  
Leandro Schlemmer Brasil ◽  
Renato Tavares Martins ◽  
Raphael Ligeiro ◽  
Alan Tonin ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 471
Author(s):  
Angelica M. Reddy ◽  
Paul D. Pratt ◽  
Brenda J. Grewell ◽  
Nathan E. Harms ◽  
Ximena Cibils-Stewart ◽  
...  

Exotic water primroses (Ludwigia spp.) are aggressive invaders in aquatic ecosystems worldwide. To date, management of exotic Ludwigia spp. has been limited to physical and chemical control methods. Biological control provides an alternative approach for the management of invasive Ludwigia spp. but little is known regarding the natural enemies of these exotic plants. Herein the biology and host range of Lysathia flavipes (Boheman), a herbivorous beetle associated with Ludwigia spp. in Argentina and Uruguay, was studied to determine its suitability as a biocontrol agent for multiple closely related target weeds in the USA. The beetle matures from egg to adult in 19.9 ± 1.4 days at 25 °C; females lived 86.3 ± 35.6 days and laid 1510.6 ± 543.4 eggs over their lifespans. No-choice development and oviposition tests were conducted using four Ludwigia species and seven native plant species. Lysathia flavipes showed little discrimination between plant species: larvae aggressively fed and completed development, and the resulting females (F1 generation) oviposited viable eggs on most plant species regardless of origin. These results indicate that L. flavipes is not sufficiently host-specific for further consideration as a biocontrol agent of exotic Ludwigia spp. in the USA and further testing is not warranted.


2011 ◽  
Vol 19 (2) ◽  
pp. 251-260 ◽  
Author(s):  
Kerri L. Cook ◽  
Wesley W. Wallender ◽  
Caroline S. Bledsoe ◽  
Gregory Pasternack ◽  
Shrini K. Upadhyaya

Sign in / Sign up

Export Citation Format

Share Document