The effects of response sharing and stimulus presentation frequency on event-related potentials in an auditory oddball paradigm

Author(s):  
János Horváth ◽  
Urte Roeber ◽  
Erich Schröger
2004 ◽  
Vol 51 (3) ◽  
pp. 189-200 ◽  
Author(s):  
Masato Higashima ◽  
Tatsuya Nagasawa ◽  
Yasuhiro Kawasaki ◽  
Takashi Oka ◽  
Naoto Sakai ◽  
...  

2005 ◽  
Vol 137 (1-2) ◽  
pp. 49-59 ◽  
Author(s):  
Aleš Kogoj ◽  
Zvezdan Pirtošek ◽  
Martina Tomori ◽  
David B. Vodušek

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Nilkamal Singh ◽  
Shirley Telles

Evoked potentials (EPs) are a relatively noninvasive method to assess the integrity of sensory pathways. As the neural generators for most of the components are relatively well worked out, EPs have been used to understand the changes occurring during meditation. Event-related potentials (ERPs) yield useful information about the response to tasks, usually assessing attention. A brief review of the literature yielded eleven studies on EPs and seventeen on ERPs from 1978 to 2014. The EP studies covered short, mid, and long latency EPs, using both auditory and visual modalities. ERP studies reported the effects of meditation on tasks such as the auditory oddball paradigm, the attentional blink task, mismatched negativity, and affective picture viewing among others. Both EP and ERPs were recorded in several meditations detailed in the review. Maximum changes occurred in mid latency (auditory) EPs suggesting that maximum changes occur in the corresponding neural generators in the thalamus, thalamic radiations, and primary auditory cortical areas. ERP studies showed meditation can increase attention and enhance efficiency of brain resource allocation with greater emotional control.


Author(s):  
Shashikanta Tarai

This chapter discusses neurocognitive mechanisms in terms of latency and amplitudes of EEG signals in depression that are presented in the form of event-related potentials (ERPs). Reviewing the available literature on depression, this chapter classifies early P100, ERN, N100, N170, P200, N200, and late P300 ERP components in frontal, mid-frontal, temporal, and parietal lobes. Using auditory oddball paradigm, most of the studies testing depressive patients have found robust P300 amplitude reduction. Proposing EEG methods and summarizing behavioral, neuroanatomical, and electrophysiological findings, this chapter discusses how the different tasks, paradigms, and stimuli contribute to the cohesiveness of neural signatures and psychobiological markers for identifying the patients with depression. Existing research gaps are directed to conduct ERP studies following go/no-go, flanker interference, and Stroop tasks on global and local attentional stimuli associated with happy and sad emotions to examine anterior cingulate cortex (ACC) dysfunction in depression.


2018 ◽  
Author(s):  
Jonathan W. P. Kuziek ◽  
Eden X. Redman ◽  
Graeme D. Splinter ◽  
Kyle E. Mathewson

AbstractBackgroundElectroencephalography (EEG) experiments often require several computers to ensure accurate stimulus presentation and data collection. However, this requirement can make it more difficult to perform such experiments in mobile settings within, or outside, the laboratoryNew MethodComputer miniaturisation and increasing processing power allow for EEG experiments to become more portable. Our goal is to show that a Latte Panda, a small Windows 10 computer, can be used to accurately collect EEG data in a similar manner to a laptop. Using a stationary bike, we also demonstrate that the Latte Panda will allow for more portable EEG experiments.ResultsSignificant and reliable MMN and P3 responses, event-related potentials (ERPs) typically associated with auditory oddball tasks, were observed and were consistent when using either the laptop or Latte Panda for EEG data collection. Similar MMN and P3 ERPs were also measured in the sitting and stationary biking conditions while using a Latte Panda for data collection.Comparison with Existing MethodData recorded by the Latte Panda computer produced comparable and equally reliable results to the laptop. As well, similar ERPs during sitting and biking would suggest that EEG experiments can be conducted in more mobile situations despite the increased noise and artefacts associated with muscle movement.ConclusionsOur results show that the Latte Panda is a low-cost, more portable alternative to a laptop computer for recording EEG data. Such a device will further allow for more portable and mobile EEG experimentation in a wider variety of environments.


F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 182
Author(s):  
Kestutis Gurevicius ◽  
Arto Lipponen ◽  
Rimante Minkeviciene ◽  
Heikki Tanila

An auditory oddball paradigm in humans generates a long-duration cortical negative potential, often referred to as mismatch negativity. Similar negativity has been documented in monkeys and cats, but it is controversial whether mismatch negativity also exists in awake rodents. To this end, we recorded cortical and hippocampal evoked responses in rats during alert immobility under a typical passive oddball paradigm that yields mismatch negativity in humans. The standard stimulus was a 9 kHz tone and the deviant either 7 or 11 kHz tone in the first condition. We found no evidence of a sustained potential shift when comparing evoked responses to standard and deviant stimuli. Instead, we found repetition-induced attenuation of the P60 component of the combined evoked response in the cortex, but not in the hippocampus. The attenuation extended over three days of recording and disappeared after 20 intervening days of rest. Reversal of the standard and deviant tones resulted is a robust enhancement of the N40 component not only in the cortex but also in the hippocampus. Responses to standard and deviant stimuli were affected similarly. Finally, we tested the effect of scopolamine in this paradigm. Scopolamine attenuated cortical N40 and P60 as well as hippocampal P60 components, but had no specific effect on the deviant response. We conclude that in an oddball paradigm the rat demonstrates repetition-induced attenuation of mid-latency responses, which resembles attenuation of the N1-component of human auditory evoked potential, but no mismatch negativity.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Naritsara Saenghong ◽  
Jintanaporn Wattanathorn ◽  
Supaporn Muchimapura ◽  
Terdthai Tongun ◽  
Nawanant Piyavhatkul ◽  
...  

The development of cognitive enhancers from plants possessing antioxidants has gained much attention due to the role of oxidative stress-induced cognitive impairment. Thus, this study aimed to determine the effect of ginger extract, orZingiber officinale, on the cognitive function of middle-aged, healthy women. Sixty participants were randomly assigned to receive a placebo or standardized plant extract at doses of 400 and 800 mg once daily for 2 months. They were evaluated for working memory and cognitive function using computerized battery tests and the auditory oddball paradigm of event-related potentials at three different time periods: before receiving the intervention, one month, and two months. We found that the ginger-treated groups had significantly decreased P300 latencies, increased N100 and P300 amplitudes, and exhibited enhanced working memory. Therefore, ginger is a potential cognitive enhancer for middle-aged women.


F1000Research ◽  
2014 ◽  
Vol 2 ◽  
pp. 182 ◽  
Author(s):  
Kestutis Gurevicius ◽  
Arto Lipponen ◽  
Rimante Minkeviciene ◽  
Heikki Tanila

An auditory oddball paradigm in humans generates a long-duration cortical negative potential, often referred to as mismatch negativity. Similar negativity has been documented in monkeys and cats, but it is controversial whether mismatch negativity also exists in awake rodents. To this end, we recorded cortical and hippocampal evoked responses in rats during alert immobility under a typical passive oddball paradigm that yields mismatch negativity in humans. The standard stimulus was a 9 kHz tone and the deviant either 7 or 11 kHz tone in the first condition. We found no evidence of a sustained potential shift when comparing evoked responses to standard and deviant stimuli. Instead, we found repetition-induced attenuation of the P60 component of the combined evoked response in the cortex, but not in the hippocampus. The attenuation extended over three days of recording and disappeared after 20 intervening days of rest. Reversal of the standard and deviant tones resulted is a robust enhancement of the N40 component not only in the cortex but also in the hippocampus. Responses to standard and deviant stimuli were affected similarly. Finally, we tested the effect of scopolamine in this paradigm. Scopolamine attenuated cortical N40 and P60 as well as hippocampal P60 components, but had no specific effect on the deviant response. We conclude that in an oddball paradigm the rat demonstrates repetition-induced attenuation of mid-latency responses, which resembles attenuation of the N1-component of human auditory evoked potential, but no mismatch negativity.


Author(s):  
Daniel Robles ◽  
Jonathan W. P. Kuziek ◽  
Nicole A. Wlasitz ◽  
Nathan T. Bartlett ◽  
Pete L. Hurd ◽  
...  

AbstractRecent advancements in portable computer devices have opened new avenues in the study of human cognition outside research laboratories. This flexibility in methodology has led to the publication of several Electroencephalography (EEG) studies recording brain responses in real world scenarios such as cycling and walking outside. In the present study, we tested the classic auditory oddball task while participants moved around an indoor running track using an electric skateboard. This novel approach allows for the study of attention in motion while virtually removing body movement. Using the skateboard auditory oddball paradigm, we found reliable and expected standard-target differences in the P3 and MMN/N2b event-related potentials (ERPs). We also recorded baseline EEG activity and found that, compared to this baseline, alpha power is attenuated in frontal and parietal regions during skateboarding. In order to explore the influence of motor interference in cognitive resources during skateboarding we compared participants’ preferred riding stance (baseline level of riding difficulty) vs their non-preferred stance (increased level of riding difficulty). We found that an increase in riding difficulty did not modulate the P3 and tonic alpha amplitude during skateboard motion.


2021 ◽  
Vol 15 ◽  
Author(s):  
Hatice Zora ◽  
Valéria Csépe

How listeners handle prosodic cues of linguistic and paralinguistic origin is a central question for spoken communication. In the present EEG study, we addressed this question by examining neural responses to variations in pitch accent (linguistic) and affective (paralinguistic) prosody in Swedish words, using a passive auditory oddball paradigm. The results indicated that changes in pitch accent and affective prosody elicited mismatch negativity (MMN) responses at around 200 ms, confirming the brain’s pre-attentive response to any prosodic modulation. The MMN amplitude was, however, statistically larger to the deviation in affective prosody in comparison to the deviation in pitch accent and affective prosody combined, which is in line with previous research indicating not only a larger MMN response to affective prosody in comparison to neutral prosody but also a smaller MMN response to multidimensional deviants than unidimensional ones. The results, further, showed a significant P3a response to the affective prosody change in comparison to the pitch accent change at around 300 ms, in accordance with previous findings showing an enhanced positive response to emotional stimuli. The present findings provide evidence for distinct neural processing of different prosodic cues, and statistically confirm the intrinsic perceptual and motivational salience of paralinguistic information in spoken communication.


Sign in / Sign up

Export Citation Format

Share Document