scholarly journals Short- and long-term habituation of auditory event-related potentials in the rat

F1000Research ◽  
2014 ◽  
Vol 2 ◽  
pp. 182 ◽  
Author(s):  
Kestutis Gurevicius ◽  
Arto Lipponen ◽  
Rimante Minkeviciene ◽  
Heikki Tanila

An auditory oddball paradigm in humans generates a long-duration cortical negative potential, often referred to as mismatch negativity. Similar negativity has been documented in monkeys and cats, but it is controversial whether mismatch negativity also exists in awake rodents. To this end, we recorded cortical and hippocampal evoked responses in rats during alert immobility under a typical passive oddball paradigm that yields mismatch negativity in humans. The standard stimulus was a 9 kHz tone and the deviant either 7 or 11 kHz tone in the first condition. We found no evidence of a sustained potential shift when comparing evoked responses to standard and deviant stimuli. Instead, we found repetition-induced attenuation of the P60 component of the combined evoked response in the cortex, but not in the hippocampus. The attenuation extended over three days of recording and disappeared after 20 intervening days of rest. Reversal of the standard and deviant tones resulted is a robust enhancement of the N40 component not only in the cortex but also in the hippocampus. Responses to standard and deviant stimuli were affected similarly. Finally, we tested the effect of scopolamine in this paradigm. Scopolamine attenuated cortical N40 and P60 as well as hippocampal P60 components, but had no specific effect on the deviant response. We conclude that in an oddball paradigm the rat demonstrates repetition-induced attenuation of mid-latency responses, which resembles attenuation of the N1-component of human auditory evoked potential, but no mismatch negativity.

F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 182
Author(s):  
Kestutis Gurevicius ◽  
Arto Lipponen ◽  
Rimante Minkeviciene ◽  
Heikki Tanila

An auditory oddball paradigm in humans generates a long-duration cortical negative potential, often referred to as mismatch negativity. Similar negativity has been documented in monkeys and cats, but it is controversial whether mismatch negativity also exists in awake rodents. To this end, we recorded cortical and hippocampal evoked responses in rats during alert immobility under a typical passive oddball paradigm that yields mismatch negativity in humans. The standard stimulus was a 9 kHz tone and the deviant either 7 or 11 kHz tone in the first condition. We found no evidence of a sustained potential shift when comparing evoked responses to standard and deviant stimuli. Instead, we found repetition-induced attenuation of the P60 component of the combined evoked response in the cortex, but not in the hippocampus. The attenuation extended over three days of recording and disappeared after 20 intervening days of rest. Reversal of the standard and deviant tones resulted is a robust enhancement of the N40 component not only in the cortex but also in the hippocampus. Responses to standard and deviant stimuli were affected similarly. Finally, we tested the effect of scopolamine in this paradigm. Scopolamine attenuated cortical N40 and P60 as well as hippocampal P60 components, but had no specific effect on the deviant response. We conclude that in an oddball paradigm the rat demonstrates repetition-induced attenuation of mid-latency responses, which resembles attenuation of the N1-component of human auditory evoked potential, but no mismatch negativity.


2018 ◽  
Vol 49 (6) ◽  
pp. 388-397
Author(s):  
François Prévost ◽  
Alexandre Lehmann

Cochlear implants restore hearing in deaf individuals, but speech perception remains challenging. Poor discrimination of spectral components is thought to account for limitations of speech recognition in cochlear implant users. We investigated how combined variations of spectral components along two orthogonal dimensions can maximize neural discrimination between two vowels, as measured by mismatch negativity. Adult cochlear implant users and matched normal-hearing listeners underwent electroencephalographic event-related potentials recordings in an optimum-1 oddball paradigm. A standard /a/ vowel was delivered in an acoustic free field along with stimuli having a deviant fundamental frequency (+3 and +6 semitones), a deviant first formant making it a /i/ vowel or combined deviant fundamental frequency and first formant (+3 and +6 semitones /i/ vowels). Speech recognition was assessed with a word repetition task. An analysis of variance between both amplitude and latency of mismatch negativity elicited by each deviant vowel was performed. The strength of correlations between these parameters of mismatch negativity and speech recognition as well as participants’ age was assessed. Amplitude of mismatch negativity was weaker in cochlear implant users but was maximized by variations of vowels’ first formant. Latency of mismatch negativity was later in cochlear implant users and was particularly extended by variations of the fundamental frequency. Speech recognition correlated with parameters of mismatch negativity elicited by the specific variation of the first formant. This nonlinear effect of acoustic parameters on neural discrimination of vowels has implications for implant processor programming and aural rehabilitation.


Author(s):  
Shashikanta Tarai

This chapter discusses neurocognitive mechanisms in terms of latency and amplitudes of EEG signals in depression that are presented in the form of event-related potentials (ERPs). Reviewing the available literature on depression, this chapter classifies early P100, ERN, N100, N170, P200, N200, and late P300 ERP components in frontal, mid-frontal, temporal, and parietal lobes. Using auditory oddball paradigm, most of the studies testing depressive patients have found robust P300 amplitude reduction. Proposing EEG methods and summarizing behavioral, neuroanatomical, and electrophysiological findings, this chapter discusses how the different tasks, paradigms, and stimuli contribute to the cohesiveness of neural signatures and psychobiological markers for identifying the patients with depression. Existing research gaps are directed to conduct ERP studies following go/no-go, flanker interference, and Stroop tasks on global and local attentional stimuli associated with happy and sad emotions to examine anterior cingulate cortex (ACC) dysfunction in depression.


2004 ◽  
Vol 51 (3) ◽  
pp. 189-200 ◽  
Author(s):  
Masato Higashima ◽  
Tatsuya Nagasawa ◽  
Yasuhiro Kawasaki ◽  
Takashi Oka ◽  
Naoto Sakai ◽  
...  

2005 ◽  
Vol 137 (1-2) ◽  
pp. 49-59 ◽  
Author(s):  
Aleš Kogoj ◽  
Zvezdan Pirtošek ◽  
Martina Tomori ◽  
David B. Vodušek

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Naritsara Saenghong ◽  
Jintanaporn Wattanathorn ◽  
Supaporn Muchimapura ◽  
Terdthai Tongun ◽  
Nawanant Piyavhatkul ◽  
...  

The development of cognitive enhancers from plants possessing antioxidants has gained much attention due to the role of oxidative stress-induced cognitive impairment. Thus, this study aimed to determine the effect of ginger extract, orZingiber officinale, on the cognitive function of middle-aged, healthy women. Sixty participants were randomly assigned to receive a placebo or standardized plant extract at doses of 400 and 800 mg once daily for 2 months. They were evaluated for working memory and cognitive function using computerized battery tests and the auditory oddball paradigm of event-related potentials at three different time periods: before receiving the intervention, one month, and two months. We found that the ginger-treated groups had significantly decreased P300 latencies, increased N100 and P300 amplitudes, and exhibited enhanced working memory. Therefore, ginger is a potential cognitive enhancer for middle-aged women.


1995 ◽  
Vol 7 (1) ◽  
pp. 81-94 ◽  
Author(s):  
Hilary Gomes ◽  
Walter Ritter ◽  
Herbert G. Vaughan

Event-related potentials were recorded to tones that subjects ignored while reading a book of their choosing. In all conditions, 90% of the tones were 100 msec in duration and 10% of the tones were 170 msec in duration. In a control condition, a customary oddball paradigm was used in which all of the tones were identical except for the longer duration tones. In two conditions, the tones varied over a wide range of tonal frequencies from 700 to 2050 Hz in 10 steps of 150 Hz. In another condition, the tones varied over the same frequencies but also varied in intensity from about 60 to 87 dB in steps of 3 dB. Thus, there was no “standard” tone in the sense of a frequently presented tone that had identical stimulus features. A mismatch negativity (MMN) was elicited in all conditions. The data are discussed in terms of the storage of information in the memory upon which the MMN is based.


Author(s):  
Daniel Robles ◽  
Jonathan W. P. Kuziek ◽  
Nicole A. Wlasitz ◽  
Nathan T. Bartlett ◽  
Pete L. Hurd ◽  
...  

AbstractRecent advancements in portable computer devices have opened new avenues in the study of human cognition outside research laboratories. This flexibility in methodology has led to the publication of several Electroencephalography (EEG) studies recording brain responses in real world scenarios such as cycling and walking outside. In the present study, we tested the classic auditory oddball task while participants moved around an indoor running track using an electric skateboard. This novel approach allows for the study of attention in motion while virtually removing body movement. Using the skateboard auditory oddball paradigm, we found reliable and expected standard-target differences in the P3 and MMN/N2b event-related potentials (ERPs). We also recorded baseline EEG activity and found that, compared to this baseline, alpha power is attenuated in frontal and parietal regions during skateboarding. In order to explore the influence of motor interference in cognitive resources during skateboarding we compared participants’ preferred riding stance (baseline level of riding difficulty) vs their non-preferred stance (increased level of riding difficulty). We found that an increase in riding difficulty did not modulate the P3 and tonic alpha amplitude during skateboard motion.


2021 ◽  
Vol 15 ◽  
Author(s):  
Hatice Zora ◽  
Valéria Csépe

How listeners handle prosodic cues of linguistic and paralinguistic origin is a central question for spoken communication. In the present EEG study, we addressed this question by examining neural responses to variations in pitch accent (linguistic) and affective (paralinguistic) prosody in Swedish words, using a passive auditory oddball paradigm. The results indicated that changes in pitch accent and affective prosody elicited mismatch negativity (MMN) responses at around 200 ms, confirming the brain’s pre-attentive response to any prosodic modulation. The MMN amplitude was, however, statistically larger to the deviation in affective prosody in comparison to the deviation in pitch accent and affective prosody combined, which is in line with previous research indicating not only a larger MMN response to affective prosody in comparison to neutral prosody but also a smaller MMN response to multidimensional deviants than unidimensional ones. The results, further, showed a significant P3a response to the affective prosody change in comparison to the pitch accent change at around 300 ms, in accordance with previous findings showing an enhanced positive response to emotional stimuli. The present findings provide evidence for distinct neural processing of different prosodic cues, and statistically confirm the intrinsic perceptual and motivational salience of paralinguistic information in spoken communication.


Sign in / Sign up

Export Citation Format

Share Document