Maintenance of the Adult Rat Superior Cervical Ganglion In Vitro: Comparison of Organ and Explant Culture Systems

1980 ◽  
Vol 34 (5) ◽  
pp. 1280-1287 ◽  
Author(s):  
D. V. Sinicropi ◽  
A. Dombrowski ◽  
C. W. Montgomery ◽  
R. K. Evans ◽  
F. C. Kauffman
1987 ◽  
Vol 7 (1) ◽  
pp. 45-57 ◽  
Author(s):  
L. Edvinsson ◽  
J. R. Copeland ◽  
P. C. Emson ◽  
J. McCulloch ◽  
R. Uddman

Perivascular nerve fibers containing neuropeptide Y (NPY)-like immunoreactivity were identified around cerebral blood vessels of human, cat, guinea pig, rat, and mouse. The major cerebral arteries were invested by dense plexuses; veins, small arteries, and arterioles were accompanied by few fibers. Removal of the superior cervical ganglion resulted in a reduction of NPY-like material in pial vessels and dura mater. Pretreatment with 6-hydroxydopamine or reserpine reduced the number of visible NPY fibers and the concentration of NPY in rat cerebral vessels. Sequential immuno-staining with antibodies toward dopamine-β-hydroxylase (DBH) (an enzyme involved in the synthesis of noradrenaline) and NPY revealed an identical localization of DBH and NPY in nerve cell bodies in the superior cervical ganglion and in perivascular fibers of pial blood vessels, suggesting their coexistence. Administration of NPY in vitro resulted in concentration-dependent contractions that were not modified by a sympathectomy. The contractions induced by noradrenaline, 5-hydroxytryptamine, and prostaglandin F2α and the dilator responses to calcitonin gene-related peptide were not modified by NPY in rat cerebral arteries. However, the constrictor response to NPY was reduced by 70% in the presence of the calcium entry blocker nifedipine, and abolished following incubation in a calcium-free buffer. These data suggest an interaction of NPY at a postsynaptic site, which for induction of contraction may open calcium channels in the sarcolemma of cerebral arteries.


2019 ◽  
Vol 98 (10) ◽  
pp. 1122-1130 ◽  
Author(s):  
T.H.N. Teshima ◽  
A.S. Tucker ◽  
S.V. Lourenço

Neuronal signaling is known to be required for salivary gland development, with parasympathetic nerves interacting with the surrounding tissues from early stages to maintain a progenitor cell population and control morphogenesis. In contrast, postganglionic sympathetic nerves arrive late in salivary gland development to perform a secretory function; however, no previous report has shown their role during development. Here, we show that a subset of neuronal cells within the parasympathetic submandibular ganglion (PSG) express the catecholaminergic marker tyrosine hydroxylase (TH) in developing murine and human submandibular glands. This sympathetic phenotype coincided with the expression of transcription factor Hand2 within the PSG from the bud stage (E12.5) of mouse embryonic salivary gland development. Hand2 was previously associated with the decision of neural crest cells to become sympathetic in other systems, suggesting a role in controlling neuronal fate in the salivary gland. The PSG therefore provides a population of TH-expressing neurons prior to the arrival of the postganglionic sympathetic axons from the superior cervical ganglion at E15.5. In culture, in the absence of nerves from the superior cervical ganglion, these PSG-derived TH neurons were clearly evident forming a network around the gland. Chemical ablation of dopamine receptors in explant culture with the neurotoxin 6-hydroxydopamine at early stages of gland development resulted in specific loss of the TH-positive neurons from the PSG, and subsequent branching was inhibited. Taken altogether, these results highlight for the first time the detailed developmental time course of TH-expressing neurons during murine salivary gland development and suggest a role for these neurons in branching morphogenesis.


Sign in / Sign up

Export Citation Format

Share Document