Spermidine synthase is prominently expressed in the striatal patch compartment and in putative interneurones of the matrix compartment

2006 ◽  
Vol 97 (1) ◽  
pp. 174-189 ◽  
Author(s):  
M. Krauss ◽  
K. Langnaese ◽  
K. Richter ◽  
I. Brunk ◽  
M. Wieske ◽  
...  
1996 ◽  
Vol 271 (3) ◽  
pp. C742-C752 ◽  
Author(s):  
H. J. Hauselmann ◽  
K. Masuda ◽  
E. B. Hunziker ◽  
M. Neidhart ◽  
S. S. Mok ◽  
...  

The matrix formed by adult human chondrocytes in alginate beads is composed of two compartments: a thin rim of cell-associated matrix that corresponds to the pericellular and territorial matrix of articular cartilage and a more abundant further-removed matrix, the equivalent of the interterritorial matrix in the tissue. On day 30 of culture, the relative and absolute volumes occupied by the cells and each of the two matrix compartments in the beads were nearly identical to those in native articular cartilage. Furthermore, the concentration of aggrecan in the cell-associated matrix was similar to that in adult human articular cartilage and was approximately 40-fold higher than in the further removed matrix compartment. Fluorescence-activated cell sorting revealed that the cell-associated matrix was built on the cell membrane in part via interactions between hyaluronic acid and CD44-like receptors. Approximately 25% of the aggrecan molecules synthesized by the chondrocytes during a 4-h pulse in the presence of [35S]sulfate on day 9 of culture were retained in the cell-associated matrix where they turned over with a half-life (t1/2) = 29 days. Most [35S]aggrecan molecules reached the further removed matrix compartment where they turned over much more slowly (t1/2 > 100 days). These results add support to the contention that aggrecan molecules residing in the pericellular and territorial areas of the adult human articular cartilage matrix are more susceptible to degradation by proteolytic enzymes synthesized by the chondrocytes than those that inhabit the interterritorial areas further removed from the cells.


1997 ◽  
Vol 272 (6) ◽  
pp. H2983-H2988 ◽  
Author(s):  
E. E. Craig ◽  
D. A. Hood

This study was undertaken to determine whether age-related changes in the content and composition of cardiac mitochondria could be due, in part, to alterations in mitochondrial protein import. Precursor proteins malate dehydrogenase and ornithine carbamoyltransferase were synthesized by in vitro transcription and translation and were incubated with mitochondria isolated from the hearts of young (4-mo), old (22-mo), and senescent (28-mo) rats. Mitochondria from senescent animals exhibited a twofold higher import rate of both precursors into the matrix compartment compared with mitochondria from young and old animals. The expression of glucose regulated protein 75 and heat shock protein 60, two matrix chaperonins that are essential for import, was elevated in the mitochondria of both old and senescent animals before the observed changes in import. Import was equally affected in senescent and young heart mitochondria by inhibition of cardiolipin, a mitochondrial phospholipid involved in protein translocation. The results indicate that the altered mitochondrial phenotype evident in the aging myocardium cannot be accounted for by reduced rates of protein import. Furthermore, levels of cardiolipin and matrix chaperonins do not appear to be rate-limiting steps in the import process. These data suggest that the protein import step of mitochondrial assembly is subject to adaptations under pathophysiological conditions.


1999 ◽  
Vol 19 (12) ◽  
pp. 4962-4971 ◽  
Author(s):  
L. Scott Janis ◽  
Robert M. Cassidy ◽  
Lawrence F. Kromer

1993 ◽  
Vol 41 (11) ◽  
pp. 1611-1615 ◽  
Author(s):  
W J Beil ◽  
P F Weller ◽  
D M Tzizik ◽  
S J Galli ◽  
A M Dvorak

Peripheral blood eosinophils from two normal donors and two patients with the hypereosinophilic syndrome (HES) were analyzed with a post-embedding immunogold method to detect the substructural location of tumor necrosis factor-alpha (TNF-alpha). In eosinophils of HES patients, TNF-alpha was localized to the matrix compartment of 64% of the specific secondary granules. Other structures in the HES eosinophils were unlabeled. No TNF-alpha was detected in eosinophils of normal donors. These studies document the first ultrastructural subcellular localization of any cytokine within the major population of secretory granules in human eosinophils and support other lines of evidence indicating that the expression of TNF-alpha may be greater in the eosinophils of HES patients than in those of normal donors.


2018 ◽  
Author(s):  
Andrea Tinterri ◽  
Fabien Menardy ◽  
Marco A. Diana ◽  
Ludmilla Lokmane ◽  
Maryama Keita ◽  
...  

AbstractThe striatum controls behaviors via the activity of direct and indirect pathway projection neurons (dSPN and iSPN) that are intermingled in all compartments. While such mosaic ensures the balanced activity of the two pathways, how it emerges remains largely unknown. Here, we show that both SPN populations are specified embryonically and progressively intermix through multidirectional iSPN migration. Using conditional mutants of the dSPN-specific transcription factor Ebf1, we found that inactivating this gene impaired selective dSPN properties, including axon pathfinding, whereas molecular and functional features of iSPN were preserved. Remarkably, Ebf1 mutation disrupted iSPN/dSPN intermixing, resulting in an uneven distribution. Such architectural defect was selective of the matrix compartment, revealing that intermixing is a parallel process to compartment formation. Our study reveals that, while iSPN/dSPN specification is largely independent, their intermingling emerges from an active migration of iSPN, thereby providing a novel framework for the building of striatal architecture.


1986 ◽  
Vol 6 (10) ◽  
pp. 3502-3512 ◽  
Author(s):  
M C Brandriss ◽  
K A Krzywicki

delta 1-Pyrroline-5-carboxylate (P5C) dehydrogenase, the second enzyme in the proline utilization (Put) pathway of Saccharomyces cerevisiae and the product of the PUT2 gene, was localized to the matrix compartment by a mitochondrial fractionation procedure. This result was confirmed by demonstrating that the enzyme had limited activity toward an externally added substrate that could not penetrate the inner mitochondrial membrane (latency). To learn more about the nature of the import of this enzyme, three gene fusions were constructed that carried 5'-regulatory sequences through codons 14, 124, or 366 of the PUT2 gene ligated to the lacZ gene of Escherichia coli. When these fusions were introduced into S. cerevisiae either on multicopy plasmids or stably integrated into the genome, proline-inducible beta-galactosidase was made. The shortest gene fusion, PUT2-lacZ14, caused the production of a high level of beta-galactosidase that was found exclusively in the cytoplasm. The PUT2-lacZ124 and PUT2-lacZ366 fusions made lower levels of beta-galactosidases that were mitochondrially localized. Mitochondrial fractionation and protease-protection experiments showed that the PUT2-lacZ124 hybrid protein was located exclusively in the matrix, while the PUT2-lacZ366 hybrid was found in the matrix as well as the inner membrane. Thus, the amino-terminal 124 amino acids of P5C dehydrogenase carries sufficient information to target and deliver beta-galactosidase to the matrix compartment. The expression of the longer hybrids had deleterious effects on cell growth; PUT2-lacZ366-containing strains failed to grow on proline as the sole source of nitrogen. In the presence of the longest hybrid beta-galactosidase, the wild-type P5C dehydrogenase was still properly localized in the matrix compartment, but its activity was reduced. The nature of the effects of these hybrid proteins on cell growth is discussed.


1986 ◽  
Vol 6 (10) ◽  
pp. 3502-3512
Author(s):  
M C Brandriss ◽  
K A Krzywicki

delta 1-Pyrroline-5-carboxylate (P5C) dehydrogenase, the second enzyme in the proline utilization (Put) pathway of Saccharomyces cerevisiae and the product of the PUT2 gene, was localized to the matrix compartment by a mitochondrial fractionation procedure. This result was confirmed by demonstrating that the enzyme had limited activity toward an externally added substrate that could not penetrate the inner mitochondrial membrane (latency). To learn more about the nature of the import of this enzyme, three gene fusions were constructed that carried 5'-regulatory sequences through codons 14, 124, or 366 of the PUT2 gene ligated to the lacZ gene of Escherichia coli. When these fusions were introduced into S. cerevisiae either on multicopy plasmids or stably integrated into the genome, proline-inducible beta-galactosidase was made. The shortest gene fusion, PUT2-lacZ14, caused the production of a high level of beta-galactosidase that was found exclusively in the cytoplasm. The PUT2-lacZ124 and PUT2-lacZ366 fusions made lower levels of beta-galactosidases that were mitochondrially localized. Mitochondrial fractionation and protease-protection experiments showed that the PUT2-lacZ124 hybrid protein was located exclusively in the matrix, while the PUT2-lacZ366 hybrid was found in the matrix as well as the inner membrane. Thus, the amino-terminal 124 amino acids of P5C dehydrogenase carries sufficient information to target and deliver beta-galactosidase to the matrix compartment. The expression of the longer hybrids had deleterious effects on cell growth; PUT2-lacZ366-containing strains failed to grow on proline as the sole source of nitrogen. In the presence of the longest hybrid beta-galactosidase, the wild-type P5C dehydrogenase was still properly localized in the matrix compartment, but its activity was reduced. The nature of the effects of these hybrid proteins on cell growth is discussed.


1986 ◽  
Vol 239 (1) ◽  
pp. 31-40 ◽  
Author(s):  
I Al-Nasser ◽  
M Crompton

The permeabilization-resealing technique [Al-Nasser & Crompton, Biochem. J. (1986) 239, 19-29] has been applied to the entrapment of arsenazo III in the matrix compartment of rat liver mitochondria. The addition of 10 mM-arsenazo III to mitochondria permeabilized with Ca2+ partially restores the inner-membrane potential (delta psi) and leads to the recovery of 3.9 nmol of arsenazo III/mg of protein in the matrix when the mitochondria are washed three times. The recovery of entrapped arsenazo III is increased 2-fold by 4 mM-Mg2+, which also promotes repolarization. ATP with or without Mg2+ decreased arsenazo III recovery. Under all conditions, less arsenazo III than [14C]sucrose is entrapped, in particular in the presence of ATP. The amount of arsenazo III entrapped is proportional to the concentration of arsenazo III used as resealant, and is equally distributed between heavy and light mitochondria. Arsenazo III-loaded permeabilized and resealed (PR) mitochondria develop delta psi values of 141 +/- 3 mV. PR mitochondria retain arsenazo III and [14C]sucrose for more than 2 h at 0 degrees C. At 25 degrees C, and in the presence of Ruthenium Red, PR mitochondria lose arsenazo III and [14C]sucrose at equal rates, but Ca2+ efflux is more rapid; this indicates that Ca2+ is released by an Na+-independent carrier in addition to permeabilization. The Na+/Ca2+ carrier of PR mitochondria is partially (60%) inhibited by extramitochondrial free Ca2+ stabilized with Ca2+ buffers; maximal inhibition is attained with 2 microM free Ca2+. A similar inhibition occurs in normal mitochondria with 3.5 nmol of matrix Ca2+/mg of protein, but the inhibition is decreased by increased matrix Ca2+. The data suggest the presence of Ca2+ regulatory sites on the Na+/Ca2+ carrier that change the affinity for matrix free Ca2+.


Sign in / Sign up

Export Citation Format

Share Document