scholarly journals Amino-terminal fragments of delta 1-pyrroline-5-carboxylate dehydrogenase direct beta-galactosidase to the mitochondrial matrix in Saccharomyces cerevisiae.

1986 ◽  
Vol 6 (10) ◽  
pp. 3502-3512 ◽  
Author(s):  
M C Brandriss ◽  
K A Krzywicki

delta 1-Pyrroline-5-carboxylate (P5C) dehydrogenase, the second enzyme in the proline utilization (Put) pathway of Saccharomyces cerevisiae and the product of the PUT2 gene, was localized to the matrix compartment by a mitochondrial fractionation procedure. This result was confirmed by demonstrating that the enzyme had limited activity toward an externally added substrate that could not penetrate the inner mitochondrial membrane (latency). To learn more about the nature of the import of this enzyme, three gene fusions were constructed that carried 5'-regulatory sequences through codons 14, 124, or 366 of the PUT2 gene ligated to the lacZ gene of Escherichia coli. When these fusions were introduced into S. cerevisiae either on multicopy plasmids or stably integrated into the genome, proline-inducible beta-galactosidase was made. The shortest gene fusion, PUT2-lacZ14, caused the production of a high level of beta-galactosidase that was found exclusively in the cytoplasm. The PUT2-lacZ124 and PUT2-lacZ366 fusions made lower levels of beta-galactosidases that were mitochondrially localized. Mitochondrial fractionation and protease-protection experiments showed that the PUT2-lacZ124 hybrid protein was located exclusively in the matrix, while the PUT2-lacZ366 hybrid was found in the matrix as well as the inner membrane. Thus, the amino-terminal 124 amino acids of P5C dehydrogenase carries sufficient information to target and deliver beta-galactosidase to the matrix compartment. The expression of the longer hybrids had deleterious effects on cell growth; PUT2-lacZ366-containing strains failed to grow on proline as the sole source of nitrogen. In the presence of the longest hybrid beta-galactosidase, the wild-type P5C dehydrogenase was still properly localized in the matrix compartment, but its activity was reduced. The nature of the effects of these hybrid proteins on cell growth is discussed.

1986 ◽  
Vol 6 (10) ◽  
pp. 3502-3512
Author(s):  
M C Brandriss ◽  
K A Krzywicki

delta 1-Pyrroline-5-carboxylate (P5C) dehydrogenase, the second enzyme in the proline utilization (Put) pathway of Saccharomyces cerevisiae and the product of the PUT2 gene, was localized to the matrix compartment by a mitochondrial fractionation procedure. This result was confirmed by demonstrating that the enzyme had limited activity toward an externally added substrate that could not penetrate the inner mitochondrial membrane (latency). To learn more about the nature of the import of this enzyme, three gene fusions were constructed that carried 5'-regulatory sequences through codons 14, 124, or 366 of the PUT2 gene ligated to the lacZ gene of Escherichia coli. When these fusions were introduced into S. cerevisiae either on multicopy plasmids or stably integrated into the genome, proline-inducible beta-galactosidase was made. The shortest gene fusion, PUT2-lacZ14, caused the production of a high level of beta-galactosidase that was found exclusively in the cytoplasm. The PUT2-lacZ124 and PUT2-lacZ366 fusions made lower levels of beta-galactosidases that were mitochondrially localized. Mitochondrial fractionation and protease-protection experiments showed that the PUT2-lacZ124 hybrid protein was located exclusively in the matrix, while the PUT2-lacZ366 hybrid was found in the matrix as well as the inner membrane. Thus, the amino-terminal 124 amino acids of P5C dehydrogenase carries sufficient information to target and deliver beta-galactosidase to the matrix compartment. The expression of the longer hybrids had deleterious effects on cell growth; PUT2-lacZ366-containing strains failed to grow on proline as the sole source of nitrogen. In the presence of the longest hybrid beta-galactosidase, the wild-type P5C dehydrogenase was still properly localized in the matrix compartment, but its activity was reduced. The nature of the effects of these hybrid proteins on cell growth is discussed.


1987 ◽  
Vol 7 (12) ◽  
pp. 4431-4440
Author(s):  
S S Wang ◽  
M C Brandriss

The PUT1 gene of Saccharomyces cerevisiae, believed to encode proline oxidase, has been completely sequenced and contains an open reading frame capable of encoding a polypeptide of 476 amino acids in length. The amino terminus of the protein deduced from the DNA sequence has a characteristic mitochondrial import signal; two PUT1-lacZ gene fusions were constructed that produced mitochondrially localized beta-galactosidase in vivo. The transcription initiation and termination sites of the PUT1 mRNA were determined. By using a PUT1-lacZ gene fusion that makes a cytoplasmic beta-galactosidase, the regulation of the PUT1 gene was studied. PUT1 is inducible by proline, responds only slightly to carbon catabolite repression, and is not regulated by the cytochrome activator proteins HAP1 and HAP2. The PUT1 gene is under oxygen regulation; expression in anaerobically grown cells is 10-fold lower than in aerobically grown cells. Oxygen regulation is abolished when cells are respiratory deficient. PUT1 expression in a [rho-] strain grown either aerobically or anaerobically is as high as that seen in a [rho+] strain grown aerobically. Studies on PUT1 promoter deletions define a region between positions -458 and -293 from the translation initiation site that is important for full expression of the PUT1 gene and required for oxygen regulation.


1987 ◽  
Vol 7 (12) ◽  
pp. 4431-4440 ◽  
Author(s):  
S S Wang ◽  
M C Brandriss

The PUT1 gene of Saccharomyces cerevisiae, believed to encode proline oxidase, has been completely sequenced and contains an open reading frame capable of encoding a polypeptide of 476 amino acids in length. The amino terminus of the protein deduced from the DNA sequence has a characteristic mitochondrial import signal; two PUT1-lacZ gene fusions were constructed that produced mitochondrially localized beta-galactosidase in vivo. The transcription initiation and termination sites of the PUT1 mRNA were determined. By using a PUT1-lacZ gene fusion that makes a cytoplasmic beta-galactosidase, the regulation of the PUT1 gene was studied. PUT1 is inducible by proline, responds only slightly to carbon catabolite repression, and is not regulated by the cytochrome activator proteins HAP1 and HAP2. The PUT1 gene is under oxygen regulation; expression in anaerobically grown cells is 10-fold lower than in aerobically grown cells. Oxygen regulation is abolished when cells are respiratory deficient. PUT1 expression in a [rho-] strain grown either aerobically or anaerobically is as high as that seen in a [rho+] strain grown aerobically. Studies on PUT1 promoter deletions define a region between positions -458 and -293 from the translation initiation site that is important for full expression of the PUT1 gene and required for oxygen regulation.


1984 ◽  
Vol 4 (11) ◽  
pp. 2467-2478
Author(s):  
R W West ◽  
R R Yocum ◽  
M Ptashne

The GAL1 and GAL10 genes, separated by 680 base pairs and divergently transcribed on chromosome 2 of Saccharomyces cerevisiae, were separately fused to the lacZ gene of Escherichia coli so that beta-galactosidase synthesis in S. cerevisiae reflected GAL1 and GAL10 promoter function. Analysis of two sets of deletions defined a 75-base-pair sequence, located ca. midway between the transcription initiation regions of GAL1 and GAL10, that mediates GAL4-dependent induction of both genes. Deletion of various parts of this sequence (called the GAL upstream activating sequence or UASG) reduced GAL1 and GAL10 induction about equally. Sequences in the GAL10-proximal half of UASG in some sequence contexts functioned independently of sequences in the GAL1-proximal half of UASG. A 33-base-pair deletion of the GAL10-proximal half of UASG drastically reduced induction. Deletions between UASG and the GAL1 TATA box caused beta-galactosidase to be synthesized at an unexpectedly high basal level, that is, in the absence of galactose and GAL4 product. Some of these mutations also reduced the repression caused by glucose.


1990 ◽  
Vol 10 (7) ◽  
pp. 3797-3800
Author(s):  
B F Ni ◽  
R B Needleman

Maltose fermentation in Saccharomyces species requires the presence of at least one of five unlinked MAL loci: MAL1, MAL2, MAL3, MAL4, and MAL6. Each of these loci consists of a complex of genes involved in maltose metabolism; the complex includes maltase, a maltose permease, and an activator of these genes. At the MAL6 locus, the activator is encoded by the MAL63 gene. While the MAL6 locus has been the subject of numerous studies, the binding sites of the MAL63 activator have not been determined. In this study, we used Escherichia coli extracts containing the MAL63 protein to define the binding sites of the MAL63 protein in the divergently transcribed MAL61-62 promotor. When a DNA fragment containing these sites was placed upstream of a CYC1-lacZ gene, maltose induced beta-galactosidase. These sites therefore constitute an upstream activating sequence for the MAL genes.


1989 ◽  
Vol 9 (11) ◽  
pp. 4706-4712
Author(s):  
A H Siddiqui ◽  
M C Brandriss

The PUT1 and PUT2 genes encoding the enzymes of the proline utilization pathway of Saccharomyces cerevisiae are induced by proline and activated by the product of the PUT3 gene. Two upstream activation sequences (UASs) in the PUT1 promoter were identified by homology to the PUT2 UAS. Deletion analysis of the two PUT1 UASs showed that they were functionally independent and additive in producing maximal levels of gene expression. The consensus PUT UAS is a 21-base-pair partially palindromic sequence required in vivo for induction of both genes. The results of a gel mobility shift assay demonstrated that the proline-specific UAS is the binding site of a protein factor. In vitro complex formation was observed in crude extracts of yeast strains carrying either a single genomic copy of the PUT3 gene or the cloned PUT3 gene on a 2 microns plasmid, and the binding was dosage dependent. DNA-binding activity was not observed in extracts of strains carrying either a put3 mutation that caused a noninducible (Put-) phenotype or a deletion of the gene. Wild-type levels of complex formation were observed in an extract of a strain carrying an allele of PUT3 that resulted in a constitutive (Put+) phenotype. Extracts from a strain carrying a PUT3-lacZ gene fusion formed two complexes of slower mobility than the wild-type complex. We conclude that the PUT3 product is either a DNA-binding protein or part of a DNA-binding complex that recognizes the UASs of both PUT1 and PUT2. Binding was observed in extracts of a strain grown in the presence or absence of proline, demonstrating the constitutive nature of the DNA-protein interaction.


1984 ◽  
Vol 4 (11) ◽  
pp. 2420-2427
Author(s):  
K L Wilson ◽  
I Herskowitz

The alpha 2 product of the alpha mating type locus of Saccharomyces cerevisiae is proposed to be a negative regulator of a set of dispersed genes concerned with specialized properties of a cells. This set of genes includes those, termed a-specific STE genes (STE2, STE6, and STE14), which are required for mating by a cells but not by alpha cells. We cloned the STE6 gene to determine whether its expression is limited to a cells and, if so, whether its expression is inhibited in alpha cells by the alpha 2 product. Expression of STE6 was assayed in two ways: by blot hybridization, RNA and by beta-galactosidase activity in strains carrying a STE6-lacZ hybrid gene. We found that STE6 expression was limited to a cells and was negatively regulated by the alpha 2 product. STE6 RNA was not detectable in strains containing the wild-type alpha 2 gene product. Expression of STE6 was at least 150-fold lower in alpha cells than in a cells, based on beta-galactosidase activities in a and alpha cells carrying the STE6-lacZ gene. These results confirmed that the alpha 2 product is a negative regulator of gene expression and showed that it acts at the level of RNA production. We also examined the phenotype of a mutant carrying an insertion mutation of the STE6 gene, the ste6::lacZ allele. In addition, an a-specific defect in mating, this mutant was greatly reduced (but not completely deficient) in a-factor production. Other phenotypes characteristic of a cells--Barrier activity, agglutination, and response to alpha-factor--were normal. STE6 thus appears to be necessary for biosynthesis of a-factor.


1989 ◽  
Vol 9 (11) ◽  
pp. 4882-4888 ◽  
Author(s):  
D M Kinney ◽  
C J Lusty

delta-N-(Phosphonacetyl)-L-ornithine (PALO), a transition state analog inhibitor of ornithine transcarbamylase, induced arginine limitation in vivo in Saccharomyces cerevisiae. Arginine restriction caused increased expression of HIS3 and TRP5, measured by the beta-galactosidase activity in strains carrying chromosomally integrated fusions of the promoter regions of each gene with the lacZ gene of Escherichia coli. The increase in beta-galactosidase activity induced by PALO was reversed by the addition of arginine and was dependent on GCN4 protein. These results indicate that PALO, like 3-amino-1,2,4-triazole DL-5-methyltryptophan, can be used to study the effect of limitation of a single amino acid, arginine, on the expression of genes under the general amino acid control regulatory system. Arginine deprivation imposed by PALO also caused increased expression of CPA1 and CPA2, coding respectively for the small and large subunits of arginine-specific carbamyl-phosphate synthetase. The observed increase was GCN4 dependent and was genetically separable from arginine-specific repression of CPA1 mRNA translation. The 5'-flanking regions of CPA1 (reported previously) and CPA2 determined in this study each contained at least two copies of the sequence TGACTC, shown to bind GCN4 protein. The beta-galactosidase activities expressed from CPA1- and CPA2-lacZ fusions integrated into the nuclear DNA of gcn4 mutant strains were five to six times less than in the wild type, when both strains were grown under depressed conditions. The gcn4 mutation reduced basal expression of both CPA1 and CPA2. The addition of arginine to strains containing the CPA1-lacZ fusion further reduced beta-galactosidase activity of the gcn4 mutant, indicating independent regulation of the CPA1 gene by the general amino acid control and by arginine-specific repression. In strains overproducing GCN4 protein, the translational control completely overrode transcriptional activation of CPA1 by general amino acid control.


1984 ◽  
Vol 4 (11) ◽  
pp. 2467-2478 ◽  
Author(s):  
R W West ◽  
R R Yocum ◽  
M Ptashne

The GAL1 and GAL10 genes, separated by 680 base pairs and divergently transcribed on chromosome 2 of Saccharomyces cerevisiae, were separately fused to the lacZ gene of Escherichia coli so that beta-galactosidase synthesis in S. cerevisiae reflected GAL1 and GAL10 promoter function. Analysis of two sets of deletions defined a 75-base-pair sequence, located ca. midway between the transcription initiation regions of GAL1 and GAL10, that mediates GAL4-dependent induction of both genes. Deletion of various parts of this sequence (called the GAL upstream activating sequence or UASG) reduced GAL1 and GAL10 induction about equally. Sequences in the GAL10-proximal half of UASG in some sequence contexts functioned independently of sequences in the GAL1-proximal half of UASG. A 33-base-pair deletion of the GAL10-proximal half of UASG drastically reduced induction. Deletions between UASG and the GAL1 TATA box caused beta-galactosidase to be synthesized at an unexpectedly high basal level, that is, in the absence of galactose and GAL4 product. Some of these mutations also reduced the repression caused by glucose.


Genetics ◽  
1987 ◽  
Vol 117 (3) ◽  
pp. 429-435
Author(s):  
Marjorie C Brandriss

ABSTRACT A mutation has been identified that prevents Saccharomyces cerevisiae cells from growing on proline as the sole source of nitrogen, causes noninducible expression of the PUT1 and PUT2 genes, and is completely recessive. In the put3-75 mutant, the basal level of expression (ammonia as nitrogen source) of PUT1-lacZ and PUT2-lacZ gene fusions as measured by β-galactosidase activity is reduced 4- and 7-fold, respectively, compared with the wild-type strain. Normal regulation is not restored when the cells are grown on arginine as the sole nitrogen source and put3-75 cells remain sensitive to the proline analog, l-azetidine-2-carboxylic acid, indicating that the block is not at the level of transport of the inducer, proline. In a cross between the put3-75 strain and the semidominant, constitutive mutation PUT3c-68, only parental ditype tetrads were found, indicating allelism of the two mutations. Further support for allelism derives from the comparison of enzyme levels in heteroallelic and heterozygous diploid strains. The constitutive allele appears to be fully dominant to the noninducible allele but only partially dominant to the wild type, suggesting an interaction between the wild-type and PUT3c-68 gene products. The PUT3 gene maps on chromosome XI, about 5.7 cM from the centromere. The phenotypes of alleles of the PUT3 gene, either recessive and noninducible (the put3-75 phenotype) or semidominant and constitutive (the PUT3c-68 phenotype), and their pleiotropy suggest that the PUT3 gene product is a positive activator of the proline utilization pathway.


Sign in / Sign up

Export Citation Format

Share Document