A highly sulfated chondroitin sulfate preparation, CS-E, prevents excitatory amino acid-induced neuronal cell death

2007 ◽  
Vol 104 (6) ◽  
pp. 1565-1576 ◽  
Author(s):  
Yoshiaki Sato ◽  
Keiko Nakanishi ◽  
Yoshihito Tokita ◽  
Hiroko Kakizawa ◽  
Michiru Ida ◽  
...  
2010 ◽  
Vol 205 (3) ◽  
pp. 263-270 ◽  
Author(s):  
Jiyeon Lee ◽  
Eunjin Lim ◽  
Yumi Kim ◽  
Endan Li ◽  
Seungjoon Park

Ghrelin is an endogenous ligand for GH secretagogue receptor type 1a (GHSR1a), and is produced and released mainly from the stomach. It has been recently demonstrated that ghrelin can function as a neuroprotective factor by inhibiting apoptotic pathways. Kainic acid (KA), an excitatory amino acid l-glutamate analog, causes neuronal death in the hippocampus; previous studies suggest that activated microglia and astrocytes actively participate in the pathogenesis of KA-induced hippocampal neurodegeneration. However, it is unclear whether ghrelin has neuroprotective effect in KA-induced hippocampal neurodegeneration. I.p. injection of KA produced typical neuronal cell death in the CA1 and CA3 pyramidal layers of the hippocampus, and the systemic administration of ghrelin significantly attenuated KA-induced neuronal cell death in these regions through the activation of GHSR1a. Ghrelin prevents KA-induced activation of microglia and astrocytes, and the expression of proinflammatory mediators tumor necrosis factor α, interleukin-1β, and cyclooxygenase-2. The inhibitory effect of ghrelin on the activation of microglia and astrocytes appears to be associated with the inhibition of matrix metalloproteinase-3 expression in damaged hippocampal neurons. Our data suggest that ghrelin has a therapeutic potential for suppressing KA-induced pathogenesis in the brain.


1997 ◽  
Vol 17 (3) ◽  
pp. 356-360 ◽  
Author(s):  
Kenji Kawaguchi ◽  
Roger P. Simon

Deep prepiriform cortex has an important role in modulating neurotransmission during limbic seizures. We used pharmacologic blockade of non- N-methyl-D-aspartate (NMDA) receptors to study excitatory circuitry from the deep prepiriform cortex to the hippocampus during global ischemia in rat. NBQX, a potent non-NMDA glutamate receptor antagonist, was microinjected stereotactically into the deep prepiriform cortex before global ischemia for 10 min. Neuronal cell death in the hippocampus was evaluated quantitatively 72 h after ischemia. The NBQX-injected rats had a greater number of surviving cells in CA1 sector of hippocampus than did saline-injected controls or rats that received NBQX injections 1 mm from the target. Thus, excitatory amino acid-mediated circuitry emanating from deep prepiriform cortex modulates ischemic neuronal injury in the hippocampus.


2018 ◽  
Author(s):  
Anna R. Malik ◽  
Kinga Szydlowska ◽  
Karolina Nizinska ◽  
Antonino Asaro ◽  
Erwin A. van Vliet ◽  
...  

SUMMARYThe family of VPS10P domain receptors emerges as central regulator of intracellular protein sorting in neurons with relevance for various brain pathologies. Here, we identified a unique role for the family member SorCS2 in protection of neurons from oxidative stress and from epilepsy-induced cell death. We show that SorCS2 acts as sorting receptor that targets the neuronal amino acid transporter EAAT3 to the plasma membrane to facilitate import of cysteine, required for synthesis of the reactive oxygen species scavenger glutathione. Absence of SorCS2 activity causes aberrant transport of EAAT3 to lysosome for catabolism and impairs cysteine uptake. As a consequence, SorCS2-deficient mice exhibit oxidative brain damage that coincides with enhanced neuronal cell death and increased mortality during epilepsy. Our findings highlight a protective role for SorCS2 in neuronal stress response and provide an explanation for upregulation of the receptor seen in surviving neurons of the human epileptic brain.


Sign in / Sign up

Export Citation Format

Share Document