limbic seizures
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 14)

H-INDEX

48
(FIVE YEARS 2)

2021 ◽  
pp. 153575972110295
Author(s):  
Hal Blumenfeld

Impaired consciousness during seizures severely affects quality of life for people with epilepsy but the mechanisms are just beginning to be understood. Consciousness is thought to involve large-scale brain networks, so it is puzzling that focal seizures often impair consciousness. Recent work investigating focal temporal lobe or limbic seizures in human patients and experimental animal models suggests that impaired consciousness is caused by active inhibition of subcortical arousal mechanisms. Focal limbic seizures exhibit decreased neuronal firing in brainstem, basal forebrain, and thalamic arousal networks, and cortical arousal can be restored when subcortical arousal circuits are stimulated during seizures. These findings open the possibility of restoring arousal and consciousness therapeutically during and following seizures by thalamic neurostimulation. When seizures cannot be stopped by existing treatments, targeted subcortical stimulation may improve arousal and consciousness, leading to improved safety and better psychosocial function for people with epilepsy.


Epilepsia ◽  
2021 ◽  
Author(s):  
Abhijeet Gummadavelli ◽  
Reese Martin ◽  
Derek Goshay ◽  
Lim‐Anna Sieu ◽  
Jingwen Xu ◽  
...  

2021 ◽  
Author(s):  
Jesús‐Servando Medel‐Matus ◽  
Don Shin ◽  
Raman Sankar ◽  
Andrey Mazarati

2021 ◽  
Vol 15 ◽  
Author(s):  
Willian Lazarini-Lopes ◽  
Raquel A. Do Val-da Silva ◽  
Rui M. P. da Silva-Júnior ◽  
Alexandra O. S. Cunha ◽  
Norberto Garcia-Cairasco

Cannabinoids and Cannabis-derived compounds have been receiving especial attention in the epilepsy research scenario. Pharmacological modulation of endocannabinoid system's components, like cannabinoid type 1 receptors (CB1R) and their bindings, are associated with seizures in preclinical models. CB1R expression and functionality were altered in humans and preclinical models of seizures. Additionally, Cannabis-derived compounds, like cannabidiol (CBD), present anticonvulsant activity in humans and in a great variety of animal models. Audiogenic seizures (AS) are induced in genetically susceptible animals by high-intensity sound stimulation. Audiogenic strains, like the Genetically Epilepsy Prone Rats, Wistar Audiogenic Rats, and Krushinsky-Molodkina, are useful tools to study epilepsy. In audiogenic susceptible animals, acute acoustic stimulation induces brainstem-dependent wild running and tonic-clonic seizures. However, during the chronic protocol of AS, the audiogenic kindling (AuK), limbic and cortical structures are recruited, and the initially brainstem-dependent seizures give rise to limbic seizures. The present study reviewed the effects of pharmacological modulation of the endocannabinoid system in audiogenic seizure susceptibility and expression. The effects of Cannabis-derived compounds in audiogenic seizures were also reviewed, with especial attention to CBD. CB1R activation, as well Cannabis-derived compounds, induced anticonvulsant effects against audiogenic seizures, but the effects of cannabinoids modulation and Cannabis-derived compounds still need to be verified in chronic audiogenic seizures. The effects of cannabinoids and Cannabis-derived compounds should be further investigated not only in audiogenic seizures, but also in epilepsy related comorbidities present in audiogenic strains, like anxiety, and depression.


2021 ◽  
Vol 10 (02) ◽  
pp. 045-050
Author(s):  
Filiz Yılmaz Onat ◽  
Esat Eşkazan

AbstractThe impressive advances in the several disciplines including neurophysiology, molecular biology, neuroimmunology, neurogenetics, neuroimaging, and neuropharmacology of epilepsies have been stimulating a mutual interaction among basic scientists, clinicians, and professionals from other disciplines, leading to the identification of clinical questions and then the design of basic science paradigms to test enigmatic clinical issues. Based on a clinical observation that the coexistence of genetic (idiopathic) generalized typical absence and mesial temporal lobe epilepsy in the same patient is extremely rare and debatable, we addressed the rare coexistence in the same individual, designed an experimental approach to test the validity of this clinical concept and to study the underlying mechanisms involved. Here we presented evidence of a mutual cross-interaction in the circuits involved in typical absence and temporal lobe epilepsy. This article delineates a phenomenological picture and comprehends a theoretical understanding of a mutual cross-interaction in typical absence as a representative of genetic generalized epilepsies and limbic epilepsy in which seizures often start from the mesial temporal lobe.


Epilepsia ◽  
2020 ◽  
Vol 61 (12) ◽  
Author(s):  
Charlie W. Zhao ◽  
Li Feng ◽  
Lim‐Anna Sieu ◽  
Brian Pok ◽  
Abhijeet Gummadavelli ◽  
...  

2020 ◽  
pp. 199-208
Author(s):  
Andrew Pan ◽  
Atthaporn Boongird ◽  
Takaheru Kunieda ◽  
Imad Najm ◽  
Hans O Lüders

Brain ◽  
2020 ◽  
Vol 143 (7) ◽  
pp. 2039-2057 ◽  
Author(s):  
Ariadna Amador ◽  
Christopher D Bostick ◽  
Heather Olson ◽  
Jurrian Peters ◽  
Chad R Camp ◽  
...  

Abstract NMDA receptors play crucial roles in excitatory synaptic transmission. Rare variants in GRIN2A encoding the GluN2A subunit are associated with a spectrum of disorders, ranging from mild speech and language delay to intractable neurodevelopmental disorders, including but not limited to developmental and epileptic encephalopathy. A de novo missense variant, p.Ser644Gly, was identified in a child with this disorder, and Grin2a knock-in mice were generated to model and extend understanding of this intractable childhood disease. Homozygous and heterozygous mutant mice exhibited altered hippocampal morphology at 2 weeks of age, and all homozygotes exhibited lethal tonic-clonic seizures by mid-third week. Heterozygous adults displayed susceptibility to induced generalized seizures, hyperactivity, repetitive and reduced anxiety behaviours, plus several unexpected features, including significant resistance to electrically-induced limbic seizures and to pentylenetetrazole induced tonic-clonic seizures. Multielectrode recordings of neuronal networks revealed hyperexcitability and altered bursting and synchronicity. In heterologous cells, mutant receptors had enhanced NMDA receptor agonist potency and slow deactivation following rapid removal of glutamate, as occurs at synapses. NMDA receptor-mediated synaptic currents in heterozygous hippocampal slices also showed a prolonged deactivation time course. Standard anti-epileptic drug monotherapy was ineffective in the patient. Introduction of NMDA receptor antagonists was correlated with a decrease in seizure burden. Chronic treatment of homozygous mouse pups with NMDA receptor antagonists significantly delayed the onset of lethal seizures but did not prevent them. These studies illustrate the power of using multiple experimental modalities to model and test therapies for severe neurodevelopmental disorders, while revealing significant biological complexities associated with GRIN2A developmental and epileptic encephalopathy.


Sign in / Sign up

Export Citation Format

Share Document