scholarly journals CGG-repeat length and neuropathological and molecular correlates in a mouse model for fragile X-associated tremor/ataxia syndrome

2008 ◽  
Vol 107 (6) ◽  
pp. 1671-1682 ◽  
Author(s):  
Judith R. Brouwer ◽  
Karin Huizer ◽  
Lies-Anne Severijnen ◽  
Renate K. Hukema ◽  
Robert F. Berman ◽  
...  
2007 ◽  
Vol 144B (4) ◽  
pp. 566-569 ◽  
Author(s):  
Flora Tassone ◽  
John Adams ◽  
Elizabeth M. Berry-Kravis ◽  
Susannah S. Cohen ◽  
Alfredo Brusco ◽  
...  

2008 ◽  
Vol 33 (6) ◽  
pp. 863-873 ◽  
Author(s):  
J.R. Brouwer ◽  
E. Severijnen ◽  
F.H. de Jong ◽  
D. Hessl ◽  
R.J. Hagerman ◽  
...  

2018 ◽  
Vol 4 (4) ◽  
pp. e246 ◽  
Author(s):  
Padmaja Vittal ◽  
Shrikant Pandya ◽  
Kevin Sharp ◽  
Elizabeth Berry-Kravis ◽  
Lili Zhou ◽  
...  

ObjectiveTo explore the association of a splice variant of theantisense fragile X mental retardation 1(ASFMR1) gene, loss offragile X mental retardation 1(FMR1) AGG interspersions andFMR1CGG repeat size with manifestation, and severity of clinical symptoms of fragile X-associated tremor/ataxia syndrome (FXTAS).MethodsPremutation carriers (PMCs) with FXTAS, without FXTAS, and normal controls (NCs) had a neurologic evaluation and collection of skin and blood samples. Expression ofASFMR1transcript/splice variant 2 (ASFMR1-TV2), nonsplicedASFMR1, totalASFMR1, andFMR1messenger RNA were quantified and compared using analysis of variance. Least absolute shrinkage and selection operator (LASSO) logistic regression and receiver operating characteristic analyses were performed.ResultsPremutation men and women both with and without FXTAS had higherASFMR1-TV2 levels compared with NC men and women (n = 135,135,p< 0.0001), andASFMR1-TV2 had good discriminating power for FXTAS compared with NCs but not for FXTAS from PMC. After adjusting for age, loss of AGG, larger CGG repeat size (in men), and elevatedASFMR1-TV2 level (in women) were strongly associated with FXTAS compared with NC and PMC (combined).ConclusionsThis study found elevated levels ofASFMR1-TV2and loss of AGG interruptions in both men and women with FXTAS. Future studies will be needed to determine whether these variables can provide useful diagnostic or predictive information.


2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Jessica Klusek ◽  
Amanda Fairchild ◽  
Carly Moser ◽  
Marsha R. Mailick ◽  
Angela John Thurman ◽  
...  

Abstract Background Women who carry a premutation allele of the FMR1 gene are at increased vulnerability to an array of age-related symptoms and disorders, including age-related decline in select cognitive skills. However, the risk factors for age-related decline are poorly understood, including the potential role of family history and genetic factors. In other forms of pathological aging, early decline in syntactic complexity is observed and predicts the later onset of neurodegenerative disease. To shed light on the earliest signs of degeneration, the present study characterized longitudinal changes in the syntactic complexity of women with the FMR1 premutation across midlife, and associations with family history of fragile X-associated tremor/ataxia syndrome (FXTAS) and CGG repeat length. Methods Forty-five women with the FMR1 premutation aged 35–64 years at study entry participated in 1–5 longitudinal assessments spaced approximately a year apart (130 observations total). All participants were mothers of children with confirmed fragile X syndrome. Language samples were analyzed for syntactic complexity and participants provided information on family history of FXTAS. CGG repeat length was determined via molecular genetic testing. Results Hierarchical linear models indicated that women who reported a family history of FXTAS exhibited faster age-related decline in syntactic complexity than those without a family history, with that difference emerging as the women reached their mid-50 s. CGG repeat length was not a significant predictor of age-related change. Conclusions Results suggest that women with the FMR1 premutation who have a family history of FXTAS may be at increased risk for neurodegenerative disease, as indicated by age-related loss of syntactic complexity. Thus, family history of FXTAS may represent a personalized risk factor for age-related disease. Follow-up study is needed to determine whether syntactic decline is an early indicator of FXTAS specifically, as opposed to being a more general age-related cognitive decline associated with the FMR1 premutation.


2020 ◽  
Vol 7 ◽  
Author(s):  
Saif N. Haify ◽  
Ruchira S. D. Mankoe ◽  
Valerie Boumeester ◽  
Esmay C. van der Toorn ◽  
Rob F. M. Verhagen ◽  
...  

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a rare neurodegenerative disorder caused by a 55–200 CGG repeat expansion in the 5′ untranslated region of the Fragile X Mental Retardation 1 (FMR1) gene. FXTAS is characterized by progressive cerebellar ataxia, Parkinsonism, intention tremors and cognitive decline. The main neuropathological hallmark of FXTAS is the presence of ubiquitin-positive intranuclear inclusions in neurons and astrocytes throughout the brain. The molecular pathology of FXTAS involves the presence of 2 to 8-fold elevated levels of FMR1 mRNA, and of a repeat-associated non-AUG (RAN) translated polyglycine peptide (FMRpolyG). Increased levels of FMR1 mRNA containing an expanded CGG repeat can result in cellular toxicity by an RNA gain-of-function mechanism. The increased levels of CGG repeat-expanded FMR1 transcripts may create RNA foci that sequester important cellular proteins, including RNA-binding proteins and FMRpolyG, in intranuclear inclusions. To date, it is unclear whether the FMRpolyG-positive intranuclear inclusions are a cause or a consequence of FXTAS disease pathology. In this report we studied the relation between the presence of neuronal intranuclear inclusions and behavioral deficits using an inducible mouse model for FXTAS. Neuronal intranuclear inclusions were observed 4 weeks after dox-induction. After 12 weeks, high numbers of FMRpolyG-positive intranuclear inclusions could be detected in the hippocampus and striatum, but no clear signs of behavioral deficits related to these specific brain regions were found. In conclusion, the observations in our inducible mouse model for FXTAS suggest a lack of correlation between the presence of intranuclear FMRpolyG-positive aggregates in brain regions and specific behavioral phenotypes.


Neuron ◽  
2013 ◽  
Vol 79 (2) ◽  
pp. 402 ◽  
Author(s):  
Peter K. Todd ◽  
Seok Yoon Oh ◽  
Amy Krans ◽  
Fang He ◽  
Chantal Sellier ◽  
...  
Keyword(s):  

Author(s):  
Naomi J. Goodrich-Hunsaker ◽  
Ling M. Wong ◽  
Yingratana McLennan ◽  
Flora Tassone ◽  
Danielle Harvey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document