progressive cerebellar ataxia
Recently Published Documents


TOTAL DOCUMENTS

111
(FIVE YEARS 44)

H-INDEX

20
(FIVE YEARS 3)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 299
Author(s):  
Fernanda Murtinheira ◽  
Mafalda Migueis ◽  
Ricardo Letra-Vilela ◽  
Mickael Diallo ◽  
Andrea Quezada ◽  
...  

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a neurodegenerative disorder commonly diagnosed in infants and characterized by progressive cerebellar ataxia, spasticity, motor sensory neuropathy and axonal demyelination. ARSACS is caused by mutations in the SACS gene that lead to truncated or defective forms of the 520 kDa multidomain protein, sacsin. Sacsin function is exclusively studied on neuronal cells, where it regulates mitochondrial network organization and facilitates the normal polymerization of neuronal intermediate filaments (i.e., neurofilaments and vimentin). Here, we show that sacsin is also highly expressed in astrocytes, C6 rat glioma cells and N9 mouse microglia. Sacsin knockout in C6 cells (C6Sacs−/−) induced the accumulation of the glial intermediate filaments glial fibrillary acidic protein (GFAP), nestin and vimentin in the juxtanuclear area, and a concomitant depletion of mitochondria. C6Sacs−/− cells showed impaired responses to oxidative challenges (Rotenone) and inflammatory stimuli (Interleukin-6). GFAP aggregation is also associated with other neurodegenerative conditions diagnosed in infants, such as Alexander disease or Giant Axonal Neuropathy. Our results, and the similarities between these disorders, reinforce the possible connection between ARSACS and intermediate filament-associated diseases and point to a potential role of glia in ARSACS pathology.


2022 ◽  
Author(s):  
Özge Dedeoglu ◽  
Ajlan Tükün ◽  
Yahya Laleli

Abstract Primary coenzyme Q10 deficiency-4 (COQ10D4) is an autosomal recessive disorder characterized by childhood-onset of cerebellar ataxia and exercise intolerance. Molecular pathology responsible for clinical findings is mitochondrial respiratory chain dysfunction. The main clinical manifestation involves early onset exercise intolerance, progressive cerebellar ataxia and movement disorders. Some affected individuals develop seizures and have mild mental impairment, indicating variable severity. COQ8A gene mutations are responsible for this disease. Here we present a patient with tremor and cerebellar atrophy in which we detected a new mutation in the COQ8A gene. The patient's clinical findings were compatible with juvenile onset COQ10D4. Therefore, we reviewed the clinical, laboratory and genetic findings of 11 juvenile-onset COQ10D4 patients reported to date, as well as the patient's presentation.


BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Sisi Shen ◽  
Wenyu Liu ◽  
Ming Zhou ◽  
Ruiyi Yang ◽  
Jinmei Li ◽  
...  

Abstract Background Brain magnetic resonance imaging (MRI) rarely reveals structural changes in patients with suspected anti-Tr/DNER encephalitis and thus provides very limited information. Here, we combined structural MRI, functional MRI, and positron emission tomography-computed tomography (PET-CT) findings to characterize this rare disorder in a patient. Case presentation A 43-year-old woman presented with progressive cerebellar ataxia, memory impairment, anxiety, and depression. Anti-Tr antibodies were detected in both her serum (1:10) and cerebrospinal fluid (1:10). A diagnosis of anti-Tr-positive autoimmune cerebellar ataxia was established. The patient’s symptoms were worse, but her brain MRI was normal. Meanwhile, voxel-based morphometry analysis showed bilateral reduced cerebellar volume, especially in the posterior lobe and uvula of the cerebellum and the middle of the left temporal lobe compared with 6 sex- and age-matched healthy subjects (6 females, 43 ± 2 years; p < 0.05). Using seed-based functional connectivity analysis, decreased connectivity between the posterior cingulate cortex/precuneus and left frontal lobe compared to the control group (p < 0.05) was detected. PET-CT revealed bilateral hypometabolism in the cerebellum and relative hypermetabolism in the cerebellar vermis and bilateral frontal lobe, but no malignant changes. Conclusions A combination of structural MRI, functional MRI, and brain PET-CT has higher diagnostic and prognostic value than conventional MRI in patients with suspected anti-Tr/DNER encephalitis.


Author(s):  
Stefan Zielen ◽  
Ruth Pia Duecker ◽  
Sandra Woelke ◽  
Helena Donath ◽  
Sharhzad Bakhtiar ◽  
...  

AbstractPatients with ataxia-telangiectasia (A-T) suffer from progressive cerebellar ataxia, immunodeficiency, respiratory failure, and cancer susceptibility. From a clinical point of view, A-T patients with IgA deficiency show more symptoms and may have a poorer prognosis. In this study, we analyzed mortality and immunity data of 659 A-T patients with regard to IgA deficiency collected from the European Society for Immunodeficiencies (ESID) registry and from 66 patients with classical A-T who attended at the Frankfurt Goethe-University between 2012 and 2018. We studied peripheral B- and T-cell subsets and T-cell repertoire of the Frankfurt cohort and survival rates of all A-T patients in the ESID registry. Patients with A-T have significant alterations in their lymphocyte phenotypes. All subsets (CD3, CD4, CD8, CD19, CD4/CD45RA, and CD8/CD45RA) were significantly diminished compared to standard values. Patients with IgA deficiency (n = 35) had significantly lower lymphocyte counts compared to A-T patients without IgA deficiency (n = 31) due to a further decrease of naïve CD4 T-cells, central memory CD4 cells, and regulatory T-cells. Although both patient groups showed affected TCR-ß repertoires compared to controls, no differences could be detected between patients with and without IgA deficiency. Overall survival of patients with IgA deficiency was significantly diminished. For the first time, our data show that patients with IgA deficiency have significantly lower lymphocyte counts and subsets, which are accompanied with reduced survival, compared to A-T patients without IgA deficiency. IgA, a simple surrogate marker, is indicating the poorest prognosis for classical A-T patients. Both non-interventional clinical trials were registered at clinicaltrials.gov 2012 (Susceptibility to infections in ataxia-telangiectasia; NCT02345135) and 2017 (Susceptibility to Infections, tumor risk and liver disease in patients with ataxia-telangiectasia; NCT03357978)


2021 ◽  
Vol 22 (15) ◽  
pp. 8247
Author(s):  
Cheng-Tsung Hsiao ◽  
Thomas F. Tropea ◽  
Ssu-Ju Fu ◽  
Tanya M. Bardakjian ◽  
Pedro Gonzalez-Alegre ◽  
...  

Loss-of-function mutations in the KV4.3 channel-encoding KCND3 gene are linked to neurodegenerative cerebellar ataxia. Patients suffering from neurodegeneration associated with iron deposition may also present with cerebellar ataxia. The mechanism underlying brain iron accumulation remains unclear. Here, we aim to ascertain the potential pathogenic role of KCND3 variant in iron accumulation-related cerebellar ataxia. We presented a patient with slowly progressive cerebellar ataxia, parkinsonism, cognitive impairment, and iron accumulation in the basal ganglia and the cerebellum. Whole exome sequencing analyses identified in the patient a heterozygous KCND3 c.1256G>A (p.R419H) variant predicted to be disease-causing by multiple bioinformatic analyses. In vitro biochemical and immunofluorescence examinations revealed that, compared to the human KV4.3 wild-type channel, the p.R419H variant exhibited normal protein abundance and subcellular localization pattern. Electrophysiological investigation, however, demonstrated that the KV4.3 p.R419H variant was associated with a dominant increase in potassium current amplitudes, as well as notable changes in voltage-dependent gating properties leading to enhanced potassium window current. These observations indicate that, in direct contrast with the loss-of-function KCND3 mutations previously reported in cerebellar ataxia patients, we identified a rare gain-of-function KCND3 variant that may expand the clinical and molecular spectra of neurodegenerative cerebellar disorders associated with brain iron accumulation.


Author(s):  
Giovanna De Michele ◽  
Daniele Galatolo ◽  
Serena Galosi ◽  
Andrea Mignarri ◽  
Gabriella Silvestri ◽  
...  

Abstract Introduction Spinocerebellar ataxia type 14 (SCA14) is a dominantly inherited neurological disorder characterized by slowly progressive cerebellar ataxia. SCA14 is caused by mutations in PRKCG, a gene encoding protein kinase C gamma (PKCγ), a master regulator of Purkinje cells development. Methods We performed next-generation sequencing targeted resequencing panel encompassing 273 ataxia genes in 358 patients with genetically undiagnosed ataxia. Results We identified fourteen patients in ten families harboring nine pathogenic heterozygous variants in PRKCG, seven of which were novel. We encountered four patients with not previously described phenotypes: one with episodic ataxia, one with a spastic paraparesis dominating her clinical manifestations, and two children with an unusually severe phenotype. Conclusions Our study broadens the genetic and clinical spectrum of SCA14.


Brain ◽  
2021 ◽  
Author(s):  
Adriana P Rebelo ◽  
Ilse Eidhof ◽  
Vivian P Cintra ◽  
Léna Guillot-Noel ◽  
Claudia V Pereira ◽  
...  

Abstract Peroxiredoxin 3 (PRDX3) belongs to a superfamily of peroxidases that function as protective antioxidant enzymes. Among the six isoforms (PRDX1–PRDX6), PRDX3 is the only protein exclusively localized to the mitochondria, which are the main source of reactive oxygen species. Excessive levels of reactive oxygen species are harmful to cells, inducing mitochondrial dysfunction, DNA damage, lipid and protein oxidation and ultimately apoptosis. Neuronal cell damage induced by oxidative stress has been associated with numerous neurodegenerative disorders including Alzheimer’s and Parkinson’s diseases.  Leveraging the large aggregation of genomic ataxia datasets from the PREPARE (Preparing for Therapies in Autosomal Recessive Ataxias) network, we identified recessive mutations in PRDX3 as the genetic cause of cerebellar ataxia in five unrelated families, providing further evidence for oxidative stress in the pathogenesis of neurodegeneration. The clinical presentation of individuals with PRDX3 mutations consists of mild-to-moderate progressive cerebellar ataxia with concomitant hyper- and hypokinetic movement disorders, severe early-onset cerebellar atrophy, and in part olivary and brainstem degeneration. Patient fibroblasts showed a lack of PRDX3 protein, resulting in decreased glutathione peroxidase activity and decreased mitochondrial maximal respiratory capacity. Moreover, PRDX3 knockdown in cerebellar medulloblastoma cells resulted in significantly decreased cell viability, increased H2O2 levels and increased susceptibility to apoptosis triggered by reactive oxygen species. Pan-neuronal and pan-glial in vivo models of Drosophila revealed aberrant locomotor phenotypes and reduced survival times upon exposure to oxidative stress.  Our findings reveal a central role for mitochondria and the implication of oxidative stress in PRDX3 disease pathogenesis and cerebellar vulnerability and suggest targets for future therapeutic approaches.


2021 ◽  
Vol 22 (6) ◽  
pp. 2990
Author(s):  
Ana Ching-López ◽  
Luis Javier Martinez-Gonzalez ◽  
Luisa Arrabal ◽  
Jorge Sáiz ◽  
Ángela Gavilán ◽  
...  

Ataxia in children is a common clinical sign of numerous neurological disorders consisting of impaired coordination of voluntary muscle movement. Its most common form, cerebellar ataxia, describes a heterogeneous array of neurologic conditions with uncountable causes broadly divided as acquired or genetic. Numerous genetic disorders are associated with chronic progressive ataxia, which complicates clinical management, particularly on the diagnostic stage. Advances in omics technologies enable improvements in clinical practice and research, so we proposed a multi-omics approach to aid in the genetic diagnosis and molecular elucidation of an undiagnosed infantile condition of chronic progressive cerebellar ataxia. Using whole-exome sequencing, RNA-seq, and untargeted metabolomics, we identified three clinically relevant mutations (rs141471029, rs191582628 and rs398124292) and an altered metabolic profile in our patient. Two POLR1C diagnostic variants already classified as pathogenic were found, and a diagnosis of hypomyelinating leukodystrophy was achieved. A mutation on the MMACHC gene, known to be associated with methylmalonic aciduria and homocystinuria cblC type, was also found. Additionally, preliminary metabolome analysis revealed alterations in our patient’s amino acid, fatty acid and carbohydrate metabolism. Our findings provided a definitive genetic diagnosis reinforcing the association between POLR1C mutations and hypomyelinating leukodystrophy and highlighted the relevance of multi-omics approaches to the disease.


2021 ◽  
Vol 16 (8) ◽  
pp. 48-52
Author(s):  
D.V. Maltsev

This description of the clinical case presents the medical history of the child aged 2 years and 6 months with a picture of Louis-Bar syndrome. Manifestations of progressive cerebellar ataxia, bruxism, oculomotor apraxia, and benign lymphoproliferative syndrome caused by Epstein-Barr virus have been reported. No signs of telangiectasia were noted, which may be explained by the age of the child. The immunological study identified signs of combined immunodeficiency with lymphopenia, a decrease in the number of T-helpers and cytotoxic T-lymphocytes in the blood, as well as low serum IgA concentration. The content of alpha-fetoprotein in the serum exceeded the normal upper limit by 15 times. Genetic test revealed three mutations in the ATM gene, in particular two known pathogenic nucleotide substitutions in the heterozygous state — c.8147T>C (p.Val2716Ala) and c.8584+2T>C (Splice donor), and one previously unknown mutation — c.3178A>G (p.fle1060Val) of uncertain diagnostic value in the heterozygous state. Valganciclovir was prescribed to inhibit reproductive activity of Epstein-Barr virus, leukocyte dialysate and propes — to compensate the immunodeficiency, and combination therapy with cerebrocurin and citicoline — for neurological deficits with a partial positive effect. This clinical example demonstrates the potential of a neuroimmunological approach to patient management, as the examined child suffered from both immunodeficiency and neurological dysfunction due to the pleiotropic effects of the mutated gene that caused the disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Elisabetta Indelicato ◽  
Sylvia Boesch

Ion channel dysfunction is a key pathological substrate of episodic neurological disorders. A classical gene associated to paroxysmal movement disorders is CACNA1A, which codes for the pore-forming subunit of the neuronal calcium channel P/Q. Non-polyglutamine CACNA1A variants underlie familial hemiplegic ataxia type 1 (FHM1) and episodic ataxia type 2 (EA2). Classical paroxysmal manifestations of FHM1 are migraine attacks preceded by motor aura consisting of hemiparesis, aphasia, and disturbances of consciousness until coma. Patients with EA2 suffer of recurrent episodes of vertigo, unbalance, diplopia, and vomiting. Beyond these typical presentations, several reports highlighted manifold clinical features associated with P/Q channelopathies, from chronic progressive cerebellar ataxia to epilepsy and psychiatric disturbances. These manifestations may often outlast the burden of classical episodic symptoms leading to pitfalls in the diagnostic work-up. Lately, the spreading of next generation sequencing techniques linked de novo CACNA1A variants to an even broader phenotypic spectrum including early developmental delay, autism spectrum disorders, epileptic encephalopathy, and early onset paroxysmal dystonia. The age-dependency represents a striking new aspect of these phenotypes und highlights a pivotal role for P/Q channels in the development of the central nervous system in a defined time window. While several reviews addressed the clinical presentation and treatment of FHM1 and EA2, an overview of the newly described age-dependent manifestations is lacking. In this Mini-Review we present a clinical update, delineate genotype-phenotype correlations as well as summarize evidence on the pathophysiological mechanisms underlying the expanded phenotype associated with CACNA1A variants.


Sign in / Sign up

Export Citation Format

Share Document