scholarly journals The newly synthesized linoleic acid derivative DCP-LA ameliorates memory deficits in animal models treated with amyloid-beta peptide and scopolamine

2005 ◽  
Vol 5 (4) ◽  
pp. 122-126 ◽  
Author(s):  
Tetsu NAGATA ◽  
Satoshi YAMAMOTO ◽  
Takahiro YAGUCHI ◽  
Hiroyuki ISO ◽  
Akito TANAKA ◽  
...  
2019 ◽  
Author(s):  
Adrienne L. Orr ◽  
Jason K. Clark ◽  
Daniel V. Madison

AbstractSoluble oligomers of amyloid-beta peptide (Abeta) have been implicated in the onset of memory deficits in Alzheimer’s disease, perhaps due to their reported ability to impair long-term potentiation (LTP) of synaptic strength. We previously showed the effect of Abeta on LTP depends on the strength of LTP induction. Furthermore, Abeta affects EPSP-Spike (E-S) potentiation more robustly than LTP, suggesting that E-S potentiation may be equally important to learning and memory in the context of Alzheimer’s disease. Here we extend our findings to two additional forms of Abeta that form higher concentrations of soluble Abeta oligomers and show that they also affect E-S potentiation at induction strengths where there is no effect on LTP in hippocampal slices.


Author(s):  
Saurav Chakraborty ◽  
Jyothsna ThimmaReddygari ◽  
Divakar Selvaraj

The Alzheimer disease is a age related neurodegenerative disease. The factors causing alzheimer disease are numerous. Research on humans and rodent models predicted various causative factors involved in Alzheimer disease progression. Among them, neuroinflammation, oxidative stress and apoptosis play a major role because of accumulation of extracellular amyloid beta peptides. Here, the clearance of amyloid beta peptide plays a major role because of the imbalance in the production and clearance of the amyloid beta peptide. Additionally, neuroinflammation by microglia, astrocytes, cytokines, chemokines and the complement system also have a major role in Alzheimer disease. The physiological clearance pathways involved in amyloid beta peptide are glymphatic, vascular and immune pathways. Amyloid precursor protein, low density lipoprotein receptor-related protein 1, receptor for advanced glycation end product, apolipoprotein E, clusterin, aquaporin 4, auto-antibodies, complement system, cytokines and microglia are involved in amyloid beta peptide clearance pathways across the blood brain barrier. The plaque formation in the brain by alternative splicing of amyloid precursor protein and production of misfolded protein results in amyloid beta agglomeration. This insoluble amyloid beta leads to neurodegenerative cascade and neuronal cell death occurs. Studies had shown disturbed sleep may be a risk factor for dementia and cognitive decline. In this review, the therapeutic targets for alzheimer disease via focussing on pathways for amyloid beta clearance are discussed.


2009 ◽  
Vol 999 (999) ◽  
pp. 1-6 ◽  
Author(s):  
L. Millucci ◽  
L. Ghezzi ◽  
G. Bernardini ◽  
A. Santucci

Sign in / Sign up

Export Citation Format

Share Document