redox proteomics
Recently Published Documents


TOTAL DOCUMENTS

180
(FIVE YEARS 19)

H-INDEX

45
(FIVE YEARS 1)

2021 ◽  
Author(s):  
He Liu ◽  
Xiaoxue Du ◽  
Jialin Zhang ◽  
Jinna Li ◽  
Sixue Chen ◽  
...  

Abstract Background: Salt stress is often associated with excessive production of reactive oxygen species (ROS). Oxidative stress caused by the accumulation of ROS is a major factor that negatively affects crop growth and yield. Root is the primary organ that senses and transmits the salt stress signal to the whole plant. How oxidative stress affect redox sensitive proteins in the roots is not known.Results: In this study, the redox proteome of sugar beet M14 roots under salt stress was investigated. Using iTRAQ reporters, we determined that salt stress caused significant changes in the abundance of many proteins (2305 at 20 min salt stress and 2663 at 10 min salt stress). Using iodoTMT reporters, a total of 95 redox proteins were determined to be responsive to salt stress after normalizing again total protein level changes. Notably, most of the differential redox proteins were involved in metabolism, ROS homeostasis, and stress and defense, while a small number play a role in transport, biosynthesis, signal transduction, transcription and photosynthesis. Transcription levels of 14 genes encoding the identified redox proteins were analyzed using qRT-PCR. All the genes were induced by salt stress at the transcriptional level. Conclusions: Based on the redox proteomics results, we construct a map of the regulatory network of M14 root redox proteins in response to salt stress. This study further refines the molecular mechanism of salt resistance at the level of protein redox regulation.


Author(s):  
Evelyne Maes ◽  
Santanu Deb‐Choudhury ◽  
Stefan Clerens ◽  
Stephanie Davis ◽  
Michael Davis ◽  
...  

2021 ◽  
Author(s):  
Shani Doron ◽  
Nardy Lampl ◽  
Alon Savidor ◽  
Corine Katina ◽  
Alexandra Gabashvili ◽  
...  

Oxidation and reduction of protein cysteinyl thiols serve as molecular switches, which is considered the most central mechanism for redox regulation of biological processes, altering protein structure, biochemical activity, subcellular localization, and binding affinity. Redox proteomics allows for the global identification of redox-modified cysteine (Cys) sites and quantification of their oxidation/reduction responses, serving as a hypothesis-generating platform to stimulate redox biology mechanistic research. Here, we developed Simultaneous Protein Expression and Redox (SPEAR) analysis, a new redox-proteomics approach based on differential labeling of oxidized and reduced cysteines with light and heavy isotopic forms of commercially available isotopically-labeled N-ethylmaleimide (NEM). The presented method does not require enrichment for labeled peptides, thus enabling simultaneous quantification of Cys oxidation state and protein abundance. Using SPEAR, we were able to quantify the in-vivo oxidation state of thousands of cysteines across the Arabidopsis proteome under steady-state and oxidative stress conditions. Functional assignment of the identified redox-sensitive proteins demonstrated the widespread effect of oxidative conditions on various cellular functions and highlighted the enrichment of chloroplast-targeted proteins. SPEAR provides a simple, straightforward, and cost-effective means of studying redox proteome dynamics. The presented data provide a global quantitative view of cysteine oxidation of well-known redox-regulated active sites and many novel redox-sensitive sites whose role in plant acclimation to stress conditions remains to be further explored.  


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Rebecca Herzog ◽  
Anja Wagner ◽  
Klaus Kratochwill

Abstract Background and Aims Reactive oxygen species (ROS) in the peritoneal cavity may result both from CKD and the specific composition of peritoneal dialysis fluids (PDF). Elevated cellular oxidative stress is defined as a cellular oxidant/antioxidant imbalance which impairs not only peritoneal cell viability but also contributes to progression of local and systemic PD-related pathomechanisms. So far only single targets or mediators of oxidative stress were investigated in mesothelial cells exposed to PD fluids. Here, we aim to analyze the broad impact and also identify individual targets of ROS during PD. Using the developed technique the anti-oxidative effect of alanyl-glutamine (AlaGln) supplementation of PDF was characterized on the proteome level. Method To establish a redox-proteomics workflow for studying oxidative stress in peritoneal mesothelial cells we used a gold-standard model of redox-stress (100 µm hydrogen peroxide (H2O2)) and PD-fluid induced stress. Levels of oxidative stress were first evaluated by intracellular ROS levels and superoxide dismutase activity. Oxidative stress levels induced by PDF were titrated to comparable levels of H2O2 treatment to be able to characterize redox modifications and the effect of addition of 8 mM AlaGln. To detect alterations of the redox proteome we adapted and refined an approach combining redox-sensitive isobaric mass tags and high-performance liquid chromatography coupled to mass spectrometry (LC/MS). We used a sequential combination of direct and indirect labeling of redox-sensitive cysteine residues. Results Exposure to PDF increased intracellular ROS production and accumulation as well as cell damage assessed by LDH-release compared to control cells. Cells exposed to AlaGln supplemented PDF showed less cell damage compared to PDF alone. Addition of AlaGln not only reduced the overall redox status (intracellular ROS and superoxide dismutase activity) but also led to different proteins being affected by redox modifications. The carefully optimized highly sensitive LC/MS-based redox proteomics workflow allowed identification of 5537 proteins of which 2614 contained a labeled cysteine. H2O2 treatment resulted in a shift of median oxidation from 11% under control conditions to 36%. While PDF alone increased the oxidation level to 31%, AlaGln supplemented PDF only led to 15% oxidation. Pathway analysis of proteins that changed their oxidation level >50% following the treatment were subjected to molecular pathway analysis revealing distinct differences. PDF exposure leads to regulation of general cell processes like regulation of glucokinase, RNA-binding and SUMOylation, addition of AlaGln regulated more specific signaling pathways for example fibrosis related pathways like TGF-ß and SMAD signaling. Conclusion Redox proteomics of peritoneal cells could represent a novel tool for the identification of mediators of uraemia and PD-induced pathomechanisms, and also to evaluate anti-oxidant pharmacological interventions to improve PD outcomes.


2021 ◽  
pp. 104247
Author(s):  
Kelly M. Balmant ◽  
Sheldon R. Lawrence ◽  
Benjamin V. Duong ◽  
Fanzhao Zhu ◽  
Ning Zhu ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 499
Author(s):  
Nicholas Day ◽  
Matthew Gaffrey ◽  
Wei-Jun Qian

Post-translational modifications regulate the structure and function of proteins that can result in changes to the activity of different pathways. These include modifications altering the redox state of thiol groups on protein cysteine residues, which are sensitive to oxidative environments. While mass spectrometry has advanced the identification of protein thiol modifications and expanded our knowledge of redox-sensitive pathways, the quantitative aspect of this technique is critical for the field of redox proteomics. In this review, we describe how mass spectrometry-based redox proteomics has enabled researchers to accurately quantify the stoichiometry of reversible oxidative modifications on specific cysteine residues of proteins. We will describe advancements in the methodology that allow for the absolute quantitation of thiol modifications, as well as recent reports that have implemented this approach. We will also highlight the significance and application of such measurements and why they are informative for the field of redox biology.


2021 ◽  
Vol 165 ◽  
pp. 31
Author(s):  
Jamie Pugh ◽  
Clare Stretton ◽  
Brian McDonagh ◽  
Philip Brownridge ◽  
Anne McArdle ◽  
...  

2021 ◽  
Vol 164 ◽  
pp. 341-353
Author(s):  
Juliane Meißner ◽  
Maryam Rezaei ◽  
Isabel Siepe ◽  
Doreen Ackermann ◽  
Simone König ◽  
...  
Keyword(s):  

Author(s):  
Tong Zhang ◽  
Matthew J. Gaffrey ◽  
Xiaolu Li ◽  
Wei-Jun Qian

The thiol redox proteome refers to all proteins whose cysteine thiols are subjected to various redox-dependent posttranslational modifications (PTMs) including S-glutathionylation (SSG), S-nitrosylation (SNO), S-sulfenylation (SOH), and S-sulfhydration (SSH). These modifications can impact various aspects of protein function such as activity, binding, conformation, localization, and interactions with other molecules. To identify novel redox proteins in signaling and regulation, it is highly desirable to have robust redox proteomics methods that can provide global, site-specific, and stoichiometric quantification of redox PTMs. Mass spectrometry (MS)-based redox proteomics has emerged as the primary platform for broad characterization of thiol PTMs in cells and tissues. Herein we review recent advances in MS-based redox proteomics approaches for quantitative profiling of redox PTMs at physiological or oxidative stress conditions and highlight some recent applications. Considering the relative maturity of available methods, emphasis will be on two types of modifications: 1) total oxidation (i.e., all reversible thiol modifications), the level of which represents the overall redox state, and 2) S-glutathionylation, a major form of reversible thiol oxidation. We also discuss the significance of stoichiometric measurements of thiol PTMs as well as future perspectives towards a better understanding of cellular redox regulatory networks in cells and tissues


Sign in / Sign up

Export Citation Format

Share Document