Comparative gene expression of steroidogenic factor 1 in Chrysemys picta and Apalone mutica turtles with temperature-dependent and genotypic sex determination

2006 ◽  
Vol 8 (5) ◽  
pp. 424-432 ◽  
Author(s):  
Nicole Valenzuela ◽  
Andrea LeClere ◽  
Takahito Shikano
2010 ◽  
Vol 7 (2) ◽  
pp. 295-298 ◽  
Author(s):  
Sherman Silber ◽  
Jonathan H. Geisler ◽  
Minjin Bolortsetseg

It has been suggested that climate change at the Cretaceous–Palaeogene (K–Pg) boundary, initiated by a bolide impact or volcanic eruptions, caused species with temperature-dependent sex determination (TSD), including dinosaurs, to go extinct because of a skewed sex ratio towards all males. To test this hypothesis, the sex-determining mechanisms (SDMs) of Cretaceous tetrapods of the Hell Creek Formation (Montana, USA) were inferred using parsimony optimizations of SDMs on a tree, including Hell Creek species and their extant relatives. Although the SDMs of non-avian dinosaurs could not be inferred, we were able to determine the SDMs of 62 species; 46 had genotypic sex determination (GSD) and 16 had TSD. The TSD hypothesis for extinctions performed poorly, predicting between 32 and 34 per cent of survivals and extinctions. Most surprisingly, of the 16 species with TSD, 14 of them survived into the Early Palaeocene. In contrast, 61 per cent of species with GSD went extinct. Possible explanations include minimal climate change at the K–Pg, or if climate change did occur, TSD species that survived had egg-laying behaviour that prevented the skewing of sex ratios, or had a sex ratio skewed towards female rather than male preponderance. Application of molecular clocks may allow the SDMs of non-avian dinosaurs to be inferred, which would be an important test of the pattern discovered here.


2007 ◽  
Vol 4 (2) ◽  
pp. 176-178 ◽  
Author(s):  
Rajkumar S Radder ◽  
Alexander E Quinn ◽  
Arthur Georges ◽  
Stephen D Sarre ◽  
Richard Shine

An individual's sex depends upon its genes (genotypic sex determination or GSD) in birds and mammals, but reptiles are more complex: some species have GSD whereas in others, nest temperatures determine offspring sex (temperature-dependent sex determination). Previous studies suggested that montane scincid lizards ( Bassiana duperreyi , Scincidae) possess both of these systems simultaneously: offspring sex is determined by heteromorphic sex chromosomes (XX–XY system) in most natural nests, but sex ratio shifts suggest that temperatures override chromosomal sex in cool nests to generate phenotypically male offspring even from XX eggs. We now provide direct evidence that incubation temperatures can sex-reverse genotypically female offspring, using a DNA sex marker. Application of exogenous hormone to eggs also can sex-reverse offspring (oestradiol application produces XY as well as XX females). In conjunction with recent work on a distantly related lizard taxon, our study challenges the notion of a fundamental dichotomy between genetic and thermally determined sex determination, and hence the validity of current classification schemes for sex-determining systems in reptiles.


1985 ◽  
Vol 63 (11) ◽  
pp. 2543-2547 ◽  
Author(s):  
Lin Schwarzkopf ◽  
Ronald J. Brooks

Temperature-dependent sex determination was studied in a northern population of painted turtles (Chrysemys picta) in both laboratory and field. Eggs incubated at constant temperatures of 30 and 32 °C produced females only, whereas those kept at 22, 24, and 26 °C produced males only. Both sexes occurred at 20 and 28 °C. The threshold temperatures (temperatures producing 50% males) were estimated to be 27.5 and 20.0 °C, and were similar to those reported for more southerly populations of C. picta. In both 1983 (a relatively warm summer) and 1984 (an average summer), temperatures in natural nests regularly fluctuated above and below both threshold temperatures. Mean nest temperatures were warmer in 1983 than in 1984, but were not useful to predict nest sex ratios. Mean nest temperatures were not similar to constant temperatures in their effect on sex ratio. Sex ratios in nests could be described best by the total number of hours for which the temperature at each nest was intermediate to the two threshold temperatures. Sex ratios (proportion male) of hatchlings in 1983 and 1984 were similar and female biased (0.12 and 0.13, respectively).


2010 ◽  
Vol 4 (1-2) ◽  
pp. 50-61 ◽  
Author(s):  
H. Merchant-Larios ◽  
V. Díaz-Hernández ◽  
A. Marmolejo-Valencia

2020 ◽  
Author(s):  
Kiran Adhikari ◽  
Jae Hak Son ◽  
Anna H. Rensink ◽  
Jaweria Jaweria ◽  
Daniel Bopp ◽  
...  

AbstractSex determination, the developmental process by which sexually dimorphic phenotypes are established, evolves fast. Species with polygenic sex determination, in which master regulatory genes are found on multiple different proto-sex chromosomes, are informative models to study the evolution of sex determination. House flies are such a model system, with male determining loci possible on all six chromosomes and a female-determiner on one of the chromosomes as well. The distributions of the two most common male-determining proto-Y chromosomes across natural populations suggests that temperature variation is an important selection pressure responsible for maintaining polygenic sex determination in this species. To test that hypothesis, we used RNA-seq to identify temperature-dependent effects of the proto-Y chromosomes on gene expression. We find no evidence for ecologically meaningful temperature-dependent expression of sex determining genes between male genotypes, but we identified hundreds of other genes whose expression depends on the interaction between proto-Y chromosome genotype and temperature. Notably, genes with genotype-by-temperature interactions on expression are not enriched on the proto-sex chromosomes. Moreover, there is no evidence that temperature-dependent expression is driven by chromosome-wide expression divergence between the proto-Y and proto-X alleles. Therefore, if temperature-dependent gene expression is responsible for differences in phenotypes and fitness of proto-Y genotypes across house fly populations, these effects are driven by a small number of temperature-dependent alleles on the proto-Y chromosomes.


Sign in / Sign up

Export Citation Format

Share Document