An Angiographically Occult Arteriovenous Malformation in the Medial Parietal Lobe Presenting as Seizures of Medial Temporal Lobe Origin

Epilepsia ◽  
1999 ◽  
Vol 40 (3) ◽  
pp. 377-381 ◽  
Author(s):  
Masami Fujii ◽  
Tatsuo Akimura ◽  
Satoshi Ozaki ◽  
Shoichi Kato ◽  
Haruhide Ito ◽  
...  
1990 ◽  
Vol 30 (12) ◽  
pp. 940-944 ◽  
Author(s):  
Nobuo OKA ◽  
Kazuyo KAMIYAMA ◽  
Jun-ichi NAKADA ◽  
Shunro ENDO ◽  
Akira TAKAKU

2021 ◽  
pp. 1-10
Author(s):  
Ichiyo Shibahara ◽  
Ryuta Saito ◽  
Masayuki Kanamori ◽  
Yukihiko Sonoda ◽  
Sumito Sato ◽  
...  

OBJECTIVE The parietooccipital fissure is an anatomical landmark that divides the temporal, occipital, and parietal lobes. More than 40% of gliomas are located in these three lobes, and the temporal lobe is the most common location. The parietooccipital fissure is located just posterior to the medial temporal lobe, but little is known about the clinical significance of this fissure in gliomas. The authors investigated the anatomical correlations between the parietooccipital fissure and posterior medial temporal gliomas to reveal the radiological features and unique invasion patterns of these gliomas. METHODS The authors retrospectively reviewed records of all posterior medial temporal glioma patients treated at their institutions and examined the parietooccipital fissure. To clarify how the surrounding structures were invaded in each case, the authors categorized tumor invasion as being toward the parietal lobe, occipital lobe, isthmus of the cingulate gyrus, insula/basal ganglia, or splenium of the corpus callosum. DSI Studio was used to visualize the fiber tractography running through the posterior medial temporal lobe. RESULTS Twenty-four patients with posterior medial temporal gliomas were identified. All patients presented with a parietooccipital fissure as an uninterrupted straight sulcus and as the posterior border of the tumor. Invasion direction was toward the parietal lobe in 13 patients, the occipital lobe in 4 patients, the isthmus of the cingulate gyrus in 19 patients, the insula/basal ganglia in 3 patients, and the splenium of the corpus callosum in 8 patients. Although the isthmus of the cingulate gyrus and the occipital lobe are located just posterior to the posterior medial temporal lobe, there was a significantly greater preponderance of invasion toward the isthmus of the cingulate gyrus than toward the occipital lobe (p = 0.00030, McNemar test). Based on Schramm’s classification for the medial temporal tumors, 4 patients had type A and 20 patients had type D tumors. The parietooccipital fissure determined the posterior border of the tumors, resulting in a unique and identical radiological feature. Diffusion spectrum imaging (DSI) tractography indicated that the fibers running through the posterior medial temporal lobe toward the occipital lobe had to detour laterally around the bottom of the parietooccipital fissure. CONCLUSIONS Posterior medial temporal gliomas present identical invasion patterns, resulting in unique radiological features that are strongly affected by the parietooccipital fissure. The parietooccipital fissure is a key anatomical landmark for understanding the complex infiltrating architecture of posterior medial temporal gliomas.


2011 ◽  
Vol 105 (4) ◽  
pp. 1454-1463 ◽  
Author(s):  
J. B. Hales ◽  
J. B. Brewer

The process of associating items encountered over time and across variable time delays is fundamental for creating memories in daily life, such as for stories and episodes. Forming associative memory for temporally discontiguous items involves medial temporal lobe structures and additional neocortical processing regions, including prefrontal cortex, parietal lobe, and lateral occipital regions. However, most prior memory studies, using concurrently presented stimuli, have failed to examine the temporal aspect of successful associative memory formation to identify when activity in these brain regions is predictive of associative memory formation. In the current study, functional MRI data were acquired while subjects were shown pairs of sequentially presented visual images with a fixed interitem delay within pairs. This design allowed the entire time course of the trial to be analyzed, starting from onset of the first item, across the 5.5-s delay period, and through offset of the second item. Subjects then completed a postscan recognition test for the items and associations they encoded during the scan and their confidence for each. After controlling for item-memory strength, we isolated brain regions selectively involved in associative encoding. Consistent with prior findings, increased regional activity predicting subsequent associative memory success was found in anterior medial temporal lobe regions of left perirhinal and entorhinal cortices and in left prefrontal cortex and lateral occipital regions. The temporal separation within each pair, however, allowed extension of these findings by isolating the timing of regional involvement, showing that increased response in these regions occurs during binding but not during maintenance.


1988 ◽  
Vol 18 (4) ◽  
pp. 843-853 ◽  
Author(s):  
Mohammed A. Shoqeirat ◽  
Andrew R. Mayes

SynopsisSome schizophrenics show anomalies in the frontal and temporal lobes. It is uncertain whether the cognitive deficits shown by Type I schizophrenics are caused directly by such anomalies, or by a deficit in the exertion of attentional effort. In this study, 16 acute schizophrenics, who broadly fitted the Type I characterization and their controls were given a battery of cognitive tests. The patients were impaired on effort-demanding tasks such as the Wisconsin Card Sorting Test, a verbal fluency test and the WAIS, which are susceptible in varying degrees to frontal, temporal and parietal lobe lesions. Patients were not disproportionately impaired, however, on a test of temporal memory and another of spatial memory, an impairment pattern that selectively reflects frontal and medial temporal lobe lesions respectively, nor were they impaired on a rate of forgetting task sensitive to medial temporal lobe lesions. These tasks were chosen not only because performance on them is selectively sensitive to frontotemporal lobe lesions, but also because it seems to depend on exerting minimum amounts of attentional effort. It is tentatively concluded that the cognitive deficits shown by Type I schizophrenics are caused by a problem in exerting attentional effort of unknown origin.


2020 ◽  
Author(s):  
Susan L. Benear ◽  
Elizabeth A. Horwath ◽  
Emily Cowan ◽  
M. Catalina Camacho ◽  
Chi Ngo ◽  
...  

The medial temporal lobe (MTL) undergoes critical developmental change throughout childhood, which aligns with developmental changes in episodic memory. We used representational similarity analysis to compare neural pattern similarity for children and adults in hippocampus and parahippocampal cortex during naturalistic viewing of clips from the same movie or different movies. Some movies were more familiar to participants than others. Neural pattern similarity was generally lower for clips from the same movie, indicating that related content taxes pattern separation-like processes. However, children showed this effect only for movies with which they were familiar, whereas adults showed the effect consistently. These data suggest that children need more exposures to stimuli in order to show mature pattern separation processes.


Sign in / Sign up

Export Citation Format

Share Document