Children show adult-like hippocampal pattern separation for familiar but not novel events

2020 ◽  
Author(s):  
Susan L. Benear ◽  
Elizabeth A. Horwath ◽  
Emily Cowan ◽  
M. Catalina Camacho ◽  
Chi Ngo ◽  
...  

The medial temporal lobe (MTL) undergoes critical developmental change throughout childhood, which aligns with developmental changes in episodic memory. We used representational similarity analysis to compare neural pattern similarity for children and adults in hippocampus and parahippocampal cortex during naturalistic viewing of clips from the same movie or different movies. Some movies were more familiar to participants than others. Neural pattern similarity was generally lower for clips from the same movie, indicating that related content taxes pattern separation-like processes. However, children showed this effect only for movies with which they were familiar, whereas adults showed the effect consistently. These data suggest that children need more exposures to stimuli in order to show mature pattern separation processes.

2020 ◽  
Author(s):  
Shao-Fang Wang ◽  
Valerie A. Carr ◽  
Serra E. Favila ◽  
Jeremy N. Bailenson ◽  
Thackery I. Brown ◽  
...  

AbstractThe hippocampus (HC) and surrounding medial temporal lobe (MTL) cortical regions play a critical role in spatial navigation and episodic memory. However, it remains unclear how the interaction between the HC’s conjunctive coding and mnemonic differentiation contributes to neural representations of spatial environments. Multivariate functional magnetic resonance imaging (fMRI) analyses enable examination of how human HC and MTL cortical regions encode multidimensional spatial information to support memory-guided navigation. We combined high-resolution fMRI with a virtual navigation paradigm in which participants relied on memory of the environment to navigate to goal locations in two different virtual rooms. Within each room, participants were cued to navigate to four learned locations, each associated with one of two reward values. Pattern similarity analysis revealed that when participants successfully arrived at goal locations, activity patterns in HC and parahippocampal cortex (PHC) represented room-goal location conjunctions and activity patterns in HC subfields represented room-reward-location conjunctions. These results add to an emerging literature revealing hippocampal conjunctive representations during goal-directed behavior.


2009 ◽  
Vol 15 (4) ◽  
pp. 536-546 ◽  
Author(s):  
PABLO CAMPO ◽  
FERNANDO MAESTÚ ◽  
IRENE GARCÍA-MORALES ◽  
ANTONIO GIL-NAGEL ◽  
BRYAN STRANGE ◽  
...  

AbstractIt has been traditionally assumed that medial temporal lobe (MTL) is not required for working memory (WM). However, animal lesion and electrophysiological studies and human neuropsychological and neuroimaging studies have provided increasing evidences of a critical involvement of MTL in WM. Based on previous findings, the central aim of this study was to investigate the contribution of the MTL to verbal WM encoding. Here, we used magnetoencephalography (MEG) to compare the patterns of MTL activation of 9 epilepsy patients suffering from left hippocampal sclerosis with those of 10 healthy matched controls while they performed a verbal WM task. MEG recordings allow detailed tracking of the time course of MTL activation. We observed impaired WM performance associated with changes in the dynamics of MTL activity in epilepsy patients. Specifically, whereas patients showed decreased activity in damaged MTL, activity in the contralateral MTL was enhanced, an effect that became significant in the 600- to 700-ms interval after stimulus presentation. These findings strongly support the crucial contribution of MTL to verbal WM encoding and provide compelling evidence for the proposal that MTL contributes to both episodic memory and WM. Whether this pattern is signaling reorganization or a normal use of a damaged structure is discussed. (JINS, 2009, 15, 536–546.)


2019 ◽  
Vol 29 (7) ◽  
pp. 1100-1111.e4 ◽  
Author(s):  
Ethan A. Solomon ◽  
Joel M. Stein ◽  
Sandhitsu Das ◽  
Richard Gorniak ◽  
Michael R. Sperling ◽  
...  

1999 ◽  
Vol 22 (3) ◽  
pp. 463-464
Author(s):  
Lynn Nadel ◽  
Lee Ryan ◽  
Katrina Keil ◽  
Karen Putnam

Aggleton & Brown rightly point out the shortcomings of the medial temporal lobe hypothesis as an approach to anterograde amnesia. Their broader perspective is a necessary corrective, and one hopes it will be taken very seriously. Although they correctly note the dangers of conflating recognition and recall, they themselves make a similar mistake in discussing familiarity; we suggest an alternative approach. We also discuss implications of their view for an analysis of retrograde amnesia. The notion that there are two routes by which the hippocampus can reactivate neuronal ensembles in the neocortex could help us understand some currently puzzling facts about the dynamics of memory consolidation.


2019 ◽  
Vol 40 (7) ◽  
pp. 2188-2199 ◽  
Author(s):  
Woorim Jeong ◽  
Hyeongrae Lee ◽  
June Sic Kim ◽  
Chun Kee Chung

2019 ◽  
Vol 30 (3) ◽  
pp. 1260-1271 ◽  
Author(s):  
He Chen ◽  
Yuji Naya

Abstract While the hippocampus (HPC) is a prime candidate combining object identity and location due to its strong connections to the ventral and dorsal pathways via surrounding medial temporal lobe (MTL) areas, recent physiological studies have reported spatial information in the ventral pathway and its downstream target in MTL. However, it remains unknown whether the object–location association proceeds along the ventral MTL pathway before HPC. To address this question, we recorded neuronal activity from MTL and area anterior inferotemporal cortex (TE) of two macaques gazing at an object to retain its identity and location in each trial. The results showed significant effects of object–location association at a single-unit level in TE, perirhinal cortex (PRC), and HPC, but not in the parahippocampal cortex. Notably, a clear area difference emerged in the association form: 1) representations of object identity were added to those of subjects’ viewing location in TE; 2) PRC signaled both the additive form and the conjunction of the two inputs; and 3) HPC signaled only the conjunction signal. These results suggest that the object and location signals are combined stepwise at TE and PRC each time primates view an object, and PRC may provide HPC with the conjunctional signal, which might be used for encoding episodic memory.


Sign in / Sign up

Export Citation Format

Share Document