WAG-F8m1Ycb rats harboring a factor VIII gene mutation provide a new animal model for hemophilia A

2010 ◽  
Vol 8 (11) ◽  
pp. 2472-2477 ◽  
Author(s):  
C. J. BOOTH ◽  
M. B. BROOKS ◽  
S. ROCKWELL ◽  
J. W. MURPHY ◽  
H. M. RINDER ◽  
...  
2004 ◽  
pp. 228-231 ◽  
Author(s):  
W. Miesbach ◽  
Th. Vigh ◽  
I. Stier-Brück ◽  
J. Oldenburg ◽  
I. Scharrer

1987 ◽  
Author(s):  
D Lillicrap ◽  
A R Giles ◽  
J J A Holden ◽  
B N White

This study has assessed the relative benefits of restriction fragment length polymorphism (RFLP) linkage and coagulation testing in the diagnosis of carriers of hemophilia A. 221 samples from 55 families have been studied for intragenic and flanking RFLPs. All samples were tested for the Factor VIII intragenic Bell RFLP and for the flanking marker St 14. 83% of obligate carrier females were heterozygous at oneor both of these two polymorphicsites. However, only38% of these women were heterozygous at the intragenic site and might safely be offered prenatal diagnosis using this marker for the hemophilia mutation. Carrier diagnosis was obtained in 52% of 81 potential carriers tested. Diagnosis wasbased on intragenic RFLP information in only 48% of these cases. Genetic diagnosis was possible in 27 atrisk women from families with no prior history of hemophilia. Four of these women were diagnosed as carriers on the basis of a gross Factor VIII gene deletion and the remaining 23 women were identified as non-carriers by the Bell (11) and Stl4 (12) RFLP data. 39 women remained undiagnosed after gene analysis studies. 23 of these women were female relatives of sporadic hemophiliacs and thus RFLP segregation analysis was inappropriate. A further 9 potential carriers were undiagnosed because of homozygosity in key individuals in their families. In 31 potential carriers we have quantitated Factor VIII:C (one stage assay) and vWf:Ag (Laurell and ELISA) and derived probabilities for carrier status. In 3 women there was conflicting genetic and coagulation data. Meanwhile, in 12 undiagnosed women from sporadic families, carrier diagnostic probabilities of > 0.9 were obtained. These studies indicate that optimal carrier detection for hemophilia A requires more intragenic and closely linked RFLPs and the continuance of coagulation testing to assist women from sporadic families.


Author(s):  
J. Schröder ◽  
V. Ivaskevicius ◽  
S. Rost ◽  
A. Müller ◽  
H.-H. Brackmann ◽  
...  

Blood ◽  
2002 ◽  
Vol 100 (9) ◽  
pp. 3432-3432 ◽  
Author(s):  
Federica Riccardi ◽  
Annarita Tagliaferri ◽  
Cesare Manotti ◽  
Corrado Pattacini ◽  
Tauro Maria Neri

2007 ◽  
Vol 10 (23) ◽  
pp. 4299-4302 ◽  
Author(s):  
Habib Onsori ◽  
Mohammad Ali Hossein . ◽  
Sheideh Montaser-Kou . ◽  
Mohammad Asgharzadeh . ◽  
Abbas Ali Hosseinpou .

Stem Cells ◽  
1993 ◽  
Vol 11 (S1) ◽  
pp. 72-76 ◽  
Author(s):  
A. Křepelová ◽  
R. Brdicka ◽  
Z. Vorlová

2001 ◽  
Vol 12 (13) ◽  
pp. 1651-1661 ◽  
Author(s):  
J. Andrew Bristol ◽  
Angela Gallo-Penn ◽  
Julie Andrews ◽  
Neeraja Idamakanti ◽  
Michael Kaleko ◽  
...  

1999 ◽  
Vol 82 (08) ◽  
pp. 555-561 ◽  
Author(s):  
Douglas Jolly ◽  
Judith Greengard

IntroductionHemophilia A results from the plasma deficiency of factor VIII, a gene carried on the X chromosome. Bleeding results from a lack of coagulation factor VIII, a large and complex protein that circulates in complex with its carrier, von Willebrand factor (vWF).1 Severe hemophilia A (<1% of normal circulating levels) is associated with a high degree of mortality, due to spontaneous and trauma-induced, life-threatening and crippling bleeding episodes.2 Current treatment in the United States consists of infusion of plasma-derived or recombinant factor VIII in response to bleeding episodes.3 Such treatment fails to prevent cumulative joint damage, a major cause of hemophilia-associated morbidity.4 Availability of prophylactic treatment, which would reduce the number and severity of bleeding episodes and, consequently, would limit such joint damage, is limited by cost and the problems associated with repeated venous access. Other problems are associated with frequent replacement treatment, including the dangers of transmission of blood-borne infections derived from plasma used as a source of factor VIII or tissue culture or formulation components. These dangers are reduced, but not eliminated, by current manufacturing techniques. Furthermore, approximately 1 in 5 patients with severe hemophilia treated with recombinant or plasma-derived factor VIII develop inhibitory humoral immune responses. In some cases, new inhibitors have developed, apparently in response to unnatural modifications introduced during manufacture or purification.5 Gene therapy could circumvent most of these difficulties. In theory, a single injection of a vector encoding the factor VIII gene could provide constant plasma levels of factor in the long term. However, long-term expression after gene transfer of a systemically expressed protein in higher mammals has seldom been described. In some cases, a vector that appeared promising in a rodent model has not worked well in larger animals, for example, due to a massive immune response not seen in the rodent.6 An excellent review of early efforts at factor VIII gene therapy appeared in an earlier volume of this series.7 A summary of results from various in vivo experiments is shown in Table 1. This chapter will focus on results pertaining to studies using vectors based on murine retroviruses, including our own work.


Sign in / Sign up

Export Citation Format

Share Document