scholarly journals Cultivation-independent analysis reveals a shift in ciliate 18S rRNA gene diversity in a polycyclic aromatic hydrocarbon-polluted soil

2007 ◽  
Vol 62 (3) ◽  
pp. 365-373 ◽  
Author(s):  
Enrique Lara ◽  
Cédric Berney ◽  
Hauke Harms ◽  
Antonis Chatzinotas
Polar Biology ◽  
2021 ◽  
Author(s):  
Eleanor E. Jackson ◽  
Ian Hawes ◽  
Anne D. Jungblut

AbstractThe undulating ice of the McMurdo Ice Shelf, Southern Victoria Land, supports one of the largest networks of ice-based, multiyear meltwater pond habitats in Antarctica, where microbial mats are abundant and contribute most of the biomass and biodiversity. We used 16S rRNA and 18S rRNA gene high-throughput sequencing to compare variance of the community structure in microbial mats within and between ponds with different salinities and pH. Proteobacteria and Cyanobacteria were the most abundant phyla, and composition at OTU level was highly specific for the meltwater ponds with strong community sorting along the salinity gradient. Our study provides the first detailed evaluation of eukaryote communities for the McMurdo Ice Shelf using the 18S rRNA gene. They were dominated by Ochrophyta, Chlorophyta and Ciliophora, consistent with previous microscopic analyses, but many OTUs belonging to less well-described heterotrophic protists from Antarctic ice shelves were also identified including Amoebozoa, Rhizaria and Labyrinthulea. Comparison of 16S and 18S rRNA gene communities showed that the Eukaryotes had lower richness and greater similarity between ponds in comparison with Bacteria and Archaea communities on the McMurdo Ice shelf. While there was a weak correlation between community dissimilarity and geographic distance, the congruity of microbial assemblages within ponds, especially for Bacteria and Archaea, implies strong habitat filtering in ice shelf meltwater pond ecosystems, especially due to salinity. These findings help to understand processes that are important in sustaining biodiversity and the impact of climate change on ice-based aquatic habitats in Antarctica.


2004 ◽  
Vol 54 (6) ◽  
pp. 2313-2317 ◽  
Author(s):  
Kerstin Derz ◽  
Ulrich Klinner ◽  
Ingolf Schuphan ◽  
Erko Stackebrandt ◽  
Reiner M. Kroppenstedt

The taxonomic position of a polycyclic-aromatic-hydrocarbon-degrading bacterium, strain 17A3T, isolated from contaminated soil was determined using a combination of phenotypic and genotypic properties. The isolate showed phenotypic properties that were diagnostic for species of the genus Mycobacterium. Comparative 16S rRNA gene sequence analysis assigned 17A3T to the 16S rRNA gene subgroup that contains Mycobacterium aurum, Mycobacterium austroafricanum, Mycobacterium vaccae and Mycobacterium vanbaalenii, but it could clearly be distinguished from these species using a combination of physiological, chemotaxonomic markers and internal rRNA gene spacer analyses. The data showed that strain 17A3T (=DSM 44605T=NRRL B-24244T) merits recognition as the type strain of a novel species of the genus Mycobacterium. The name Mycobacterium pyrenivorans sp. nov. is proposed for the species because of its ability to use pyrene as a sole source of carbon and energy.


2010 ◽  
Vol 60 (5) ◽  
pp. 1125-1129 ◽  
Author(s):  
Baisuo Zhao ◽  
Hui Wang ◽  
Ruirui Li ◽  
Xinwei Mao

A polycyclic aromatic hydrocarbon-degrading marine bacterium, designated strain P-4T, was isolated from oil-polluted saline soil in Xianhe, Shangdong Province, China. Strain P-4T was Gram-negative-staining with curved to spiral rod-shaped cells and grew optimally with 3–6 % (w/v) NaCl and at 30 °C. The predominant fatty acids were C18 : 1 ω7c (35.0 %), C16 : 0 (25.0 %), C16 : 1 ω7c (17.9 %), C14 : 0 (6.2 %) and C17 : 0 cyclo (5.2 %). The major respiratory quinone was Q-9 and the genomic DNA G+C content was 61.2±1.0 mol%. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that strain P-4T belonged to the genus Thalassospira of the class Alphaproteobacteria. DNA–DNA hybridization with Thalassospira xiamenensis DSM 17429T showed relatedness of 36.0 %, and lower values were obtained with respect to other Thalassospira species. Based on physiological and biochemical tests and 16S rRNA gene sequence analysis as well as DNA–DNA relatedness, strain P-4T should be placed in the genus Thalassospira within a novel species. The name Thalassospira xianhensis sp. nov. is proposed, with P-4T (=CGMCC 1.6849T =JCM 14850T) as the type strain.


2001 ◽  
Vol 67 (6) ◽  
pp. 2683-2691 ◽  
Author(s):  
L. L. Daane ◽  
I. Harjono ◽  
G. J. Zylstra ◽  
M. M. Häggblom

ABSTRACT Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria were isolated from contaminated estuarine sediment and salt marsh rhizosphere by enrichment using either naphthalene, phenanthrene, or biphenyl as the sole source of carbon and energy. Pasteurization of samples prior to enrichment resulted in isolation of gram-positive, spore-forming bacteria. The isolates were characterized using a variety of phenotypic, morphologic, and molecular properties. Identification of the isolates based on their fatty acid profiles and partial 16S rRNA gene sequences assigned them to three main bacterial groups: gram-negative pseudomonads; gram-positive, non-spore-forming nocardioforms; and the gram-positive, spore-forming group,Paenibacillus. Genomic digest patterns of all isolates were used to determine unique isolates, and representatives from each bacterial group were chosen for further investigation. Southern hybridization was performed using genes for PAH degradation fromPseudomonas putida NCIB 9816-4, Comamonas testosteroni GZ42, Sphingomonas yanoikuyae B1, andMycobacterium sp. strain PY01. None of the isolates from the three groups showed homology to the B1 genes, only two nocardioform isolates showed homology to the PY01 genes, and only members of the pseudomonad group showed homology to the NCIB 9816-4 or GZ42 probes. The Paenibacillus isolates showed no homology to any of the tested gene probes, indicating the possibility of novel genes for PAH degradation. Pure culture substrate utilization experiments using several selected isolates from each of the three groups showed that the phenanthrene-enriched isolates are able to utilize a greater number of PAHs than are the naphthalene-enriched isolates. Inoculating two of the gram-positive isolates to a marine sediment slurry spiked with a mixture of PAHs (naphthalene, fluorene, phenanthrene, and pyrene) and biphenyl resulted in rapid transformation of pyrene, in addition to the two- and three-ringed PAHs and biphenyl. This study indicates that the rhizosphere of salt marsh plants contains a diverse population of PAH-degrading bacteria, and the use of plant-associated microorganisms has the potential for bioremediation of contaminated sediments.


2009 ◽  
Vol 75 (9) ◽  
pp. 2613-2620 ◽  
Author(s):  
David R. Singleton ◽  
Liza Guzmán Ramirez ◽  
Michael D. Aitken

ABSTRACT Acidovorax sp. strain NA3 was isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soil that had been treated in a bioreactor and enriched with phenanthrene. The 16S rRNA gene of the isolate possessed 99.8 to 99.9% similarity to the dominant sequences recovered during a previous stable-isotope probing experiment with [U-13C]phenanthrene on the same soil (D. R. Singleton, S. N. Powell, R. Sangaiah, A. Gold, L. M. Ball, and M. D. Aitken, Appl. Environ. Microbiol. 71:1202-1209, 2005). The strain grew on phenanthrene as a sole carbon and energy source and could mineralize 14C from a number of partially labeled PAHs, including naphthalene, phenanthrene, chrysene, benz[a]anthracene, and benzo[a]pyrene, but not pyrene or fluoranthene. Southern hybridizations of a genomic fosmid library with a fragment of the large subunit of the ring-hydroxylating dioxygenase gene from a naphthalene-degrading Pseudomonas strain detected the presence of PAH degradation genes subsequently determined to be highly similar in both nucleotide sequence and gene organization to an uncharacterized Alcaligenes faecalis gene cluster. The genes were localized to the chromosome of strain NA3. To test for gene induction by selected compounds, RNA was extracted from amended cultures and reverse transcribed, and cDNA associated with the enzymes involved in the first three steps of phenanthrene degradation was quantified by quantitative real-time PCR. Expression of each of the genes was induced most strongly by phenanthene and to a lesser extent by naphthalene, but other tested PAHs and PAH metabolites had negligible effects on gene transcript levels.


2009 ◽  
Vol 75 (19) ◽  
pp. 6322-6330 ◽  
Author(s):  
Aurélie Cébron ◽  
Thierry Beguiristain ◽  
Pierre Faure ◽  
Marie-Paule Norini ◽  
Jean-François Masfaraud ◽  
...  

ABSTRACT The polycyclic aromatic hydrocarbon (PAH) contamination, bacterial community, and PAH-degrading bacteria were monitored in aged PAH-contaminated soil (Neuves-Maisons [NM] soil; with a mean of 1,915 mg of 16 PAHs·kg−1 of soil dry weight) and in the same soil previously treated by thermal desorption (TD soil; with a mean of 106 mg of 16 PAHs·kg−1 of soil dry weight). This study was conducted in situ for 2 years using experimental plots of the two soils. NM soil was colonized by spontaneous vegetation (NM-SV), planted with Medicago sativa (NM-Ms), or left as bare soil (NM-BS), and the TD soil was planted with Medicago sativa (TD-Ms). The bacterial community density, structure, and diversity were estimated by real-time PCR quantification of the 16S rRNA gene copy number, temporal thermal gradient gel electrophoresis fingerprinting, and band sequencing, respectively. The density of the bacterial community increased the first year during stabilization of the system and stayed constant in the NM soil, while it continued to increase in the TD soil during the second year. The bacterial community structure diverged among all the plot types after 2 years on site. In the NM-BS plots, the bacterial community was represented mainly by Betaproteobacteria and G ammaproteobacteria. The presence of vegetation (NM-SV and NM-Ms) in the NM soil favored the development of a wider range of bacterial phyla (Alphaproteobacteria, Betaproteobacteria, G ammaproteobacteria, Verrucomicrobia, Actinobacteria, Firmicutes, and Chlorof l exi) that, for the most part, were not closely related to known bacterial representatives. Moreover, under the influence of the same plant, the bacterial community that developed in the TD-Ms was represented by different bacterial species (Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Actinobacteria) than that in the NM-Ms. During the 2 years of monitoring, the PAH concentration did not evolve significantly. The abundance of gram-negative (GN) and gram-positive (GP) PAH-degrading bacteria was estimated by real-time PCR quantification of specific functional genes encoding the α subunit of PAH-ring hydroxylating dioxygenase (PAH-RHDα). The percentage of the PAH-RHDα GN bacterial genes relative to 16S rRNA gene density decreased with time in all the plots. The GP PAH-RHDα bacterial gene proportion decreased in the NM-BS plots but stayed constant or increased under vegetation influence (NM-SV, NM-Ms, and TD-Ms).


2000 ◽  
Vol 66 (5) ◽  
pp. 1834-1843 ◽  
Author(s):  
Leen Bastiaens ◽  
Dirk Springael ◽  
Pierre Wattiau ◽  
Hauke Harms ◽  
Rupert deWachter ◽  
...  

ABSTRACT Two different procedures were compared to isolate polycyclic aromatic hydrocarbon (PAH)-utilizing bacteria from PAH-contaminated soil and sludge samples, i.e., (i) shaken enrichment cultures in liquid mineral medium in which PAHs were supplied as crystals and (ii) a new method in which PAH degraders were enriched on and recovered from hydrophobic membranes containing sorbed PAHs. Both techniques were successful, but selected from the same source different bacterial strains able to grow on PAHs as the sole source of carbon and energy. The liquid enrichment mainly selected for Sphingomonasspp., whereas the membrane method exclusively led to the selection ofMycobacterium spp. Furthermore, in separate membrane enrichment set-ups with different membrane types, three repetitive extragenic palindromic PCR-related Mycobacterium strains were recovered. The new Mycobacterium isolates were strongly hydrophobic and displayed the capacity to adhere strongly to different surfaces. One strain, Mycobacterium sp. LB501T, displayed an unusual combination of high adhesion efficiency and an extremely high negative charge. This strain may represent a new bacterial species as suggested by 16S rRNA gene sequence analysis. These results indicate that the provision of hydrophobic sorbents containing sorbed PAHs in the enrichment procedure discriminated in favor of certain bacterial characteristics. The new isolation method is appropriate to select for adherent PAH-degrading bacteria, which might be useful to biodegrade sorbed PAHs in soils and sludge.


Sign in / Sign up

Export Citation Format

Share Document