adhesion efficiency
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 16)

H-INDEX

15
(FIVE YEARS 3)

Author(s):  
Xinying Su ◽  
Xin Cheng ◽  
Yu Wang ◽  
Jintao Luo

Abstract This study aimed to determine the effects of D-tyrosine, D-aspartic acid, D-tryptophan and D-leucine on biofilm formation of mixed microorganisms. Results showed that, in the attachment stage, D-amino acids caused significant reduction in adhesion efficiency of mixed microorganisms to membrane surface. Moreover, D-amino acids have a promoting effect on the reversible adhesion of mixed microorganisms. The addition of D-amino acid generally inhibited the biofilm biomass, of which D-tyrosine has the best inhibition effect. With the effect of D-tyrosine, D-aspartic acid, D-tryptophan and D-leucine, the protein in extracellular polymeric substance (EPS) decreased by 8.21%, 7.65%, 3.51% and 11.31%, respectively. The carbohydrates in EPS decreased by 29.53%, 21.44%, 14.60% and 10.54%, respectively. The results of excitation-emission matrix spectra (EEMs) suggested that the structural properties of the tyrosine-like proteins, tryptophan-like protein and humic-like acid might have changed by the D-amino acids.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Elliot Y. Makhani ◽  
Ailin Zhang ◽  
Jered B. Haun

AbstractNanoparticles have drawn intense interest as delivery agents for diagnosing and treating various cancers. Much of the early success was driven by passive targeting mechanisms such as the enhanced permeability and retention (EPR) effect, but this has failed to lead to the expected clinical successes. Active targeting involves binding interactions between the nanoparticle and cancer cells, which promotes tumor cell-specific accumulation and internalization. Furthermore, nanoparticles are large enough to facilitate multiple bond formation, which can improve adhesive properties substantially in comparison to the single bond case. While multivalent binding is universally believed to be an attribute of nanoparticles, it is a complex process that is still poorly understood and difficult to control. In this review, we will first discuss experimental studies that have elucidated roles for parameters such as nanoparticle size and shape, targeting ligand and target receptor densities, and monovalent binding kinetics on multivalent nanoparticle adhesion efficiency and cellular internalization. Although such experimental studies are very insightful, information is limited and confounded by numerous differences across experimental systems. Thus, we focus the second part of the review on theoretical aspects of binding, including kinetics, biomechanics, and transport physics. Finally, we discuss various computational and simulation studies of nanoparticle adhesion, including advanced treatments that compare directly to experimental results. Future work will ideally continue to combine experimental data and advanced computational studies to extend our knowledge of multivalent adhesion, as well as design the most powerful nanoparticle-based agents to treat cancer.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4987
Author(s):  
Elżbieta Adamska ◽  
Karolina Niska ◽  
Anna Wcisło ◽  
Beata Grobelna

Core-shell structures are the most common type of composite material nanostructures due to their multifunctional properties. Silver nanoparticles show broad antimicrobial activity, but the safety of their utilization still remains an issue to tackle. In many applications, the silver core is coated with inorganic shell to reduce the metal toxicity. This article presents the synthesis of various materials based on silver and silica nanoparticles, including SiO2@Ag, Ag@SiO2, and sandwich nanostructures—Ag@SiO2@Ag—and the morphology of these nanomaterials based on transmission electron microscopy (TEM), UV-Vis spectroscopy, and FT-IR spectroscopy. Moreover, we conducted the angle measurements due to the strong relationship between the level of surface wettability and cell adhesion efficiency. The main aim of the study was to determine the cytotoxicity of the obtained materials against two types of human skin cells—keratinocytes (HaCaT) and fibroblasts (HDF). We found that among all the obtained structures, SiO2@Ag and Ag@SiO2 showed the lowest cell toxicity and very high half-maximal inhibitory concentration. Moreover, the measurements of the contact angle showed that Ag@SiO2 nanostructures were different from other materials due to their superhydrophilic nature. The novel approach presented here shows the promise of implementing core-shell type nanomaterials in skin-applied cosmetic or medical products.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0251096
Author(s):  
Yaraymi Ortiz ◽  
Alam García-Heredia ◽  
Angel Merino-Mascorro ◽  
Santos García ◽  
Luisa Solís-Soto ◽  
...  

Adherence of bacteria to the human intestinal mucosa can facilitate their internalization and the development of pathological processes. Escherichia coli O104:H4 is considered a hybrid strain (enteroaggregative hemorrhagic E. coli [EAHEC]), sharing virulence factors found in enterohemorrhagic (EHEC), and enteroaggregative (EAEC) E. coli pathotypes. The objective of this study was to analyze the effects of natural and synthetic antimicrobials (carvacrol, oregano extract, brazilin, palo de Brasil extract, and rifaximin) on the adherence of EHEC O157:H7, EAEC 042, and EAHEC O104:H4 to HEp-2 cells and to assess the expression of various genes involved in this process. Two concentrations of each antimicrobial that did not affect (p≤0.05) bacterial viability or damage the bacterial membrane integrity were used. Assays were conducted to determine whether the antimicrobials alter adhesion by affecting bacteria and/or alter adhesion by affecting the HEp-2 cells, whether the antimicrobials could detach bacteria previously adhered to HEp-2 cells, and whether the antimicrobials could modify the adherence ability exhibited by the bacteria for several cycles of adhesion assays. Giemsa stain and qPCR were used to assess the adhesion pattern and gene expression, respectively. The results showed that the antimicrobials affected the adherence abilities of the bacteria, with carvacrol, oregano extract, and rifaximin reducing up to 65% (p≤0.05) of E. coli adhered to HEp-2 cells. Carvacrol (10 mg/ml) was the most active compound against EHAEC O104:H4, even altering its aggregative adhesion pattern. There were changes in the expression of adhesion-related genes (aggR, pic, aap, aggA, and eae) in the bacteria and oxidative stress-related genes (SOD1, SOD2, CAT, and GPx) in the HEp-2 cells. In general, we demonstrated that carvacrol, oregano extract, and rifaximin at sub-minimal bactericidal concentrations interfere with target sites in E. coli, reducing the adhesion efficiency.


Author(s):  
Ying Mao ◽  
Robert Guidoin ◽  
Gaëtan Brochu ◽  
Yan Li ◽  
Ze Zhang ◽  
...  

Author(s):  
Sunyoung Park ◽  
Heeyoung Lee ◽  
Sejeong Kim ◽  
Yukyung Choi ◽  
Hyemin Oh ◽  
...  

In this study, to investigate the pathogenic characteristics of the isolates, the pathogenic gene ( tdh gene) was identified, and adherence and cytotoxicity assays were performed. Furthermore, genome sequences of the seafood isolates were analyzed using the Illumina Hi-seq 2500 platform. The isolated strains were then mapped by comparing the genomes to the reference genome, and variations in the nucleotide sequences and amino acids were identified with the CLC Genomics Workbench program. As a result, the tdh gene was identified in four isolates of V. parahaemolyticus , three (SMFM201809-CPC7-3, SMFM201809-CF8-2, and SMFM201809-CF8-3) of which showed high cytotoxicity and differences in cell adhesion. Thus, they were selected to identify virulence factors and genomic variations. All three isolates had the same virulence factors, such as adherence, secretion systems, and toxin. Additionally, this study identified amino acid variants in the regions of type IV pilus, T3SS1, T3SS1 secreted effectors, and thermolabile hemolysin. These results indicate that variations in amino acids found in regions related to adherence and cytotoxicity led to differences in adhesion efficiency and cytotoxicity. Therefore, the isolates may cause more serious foodborne illness. .


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 987
Author(s):  
Wen-Jen Liu ◽  
Yung-Huang Chang ◽  
Yuan-Tsung Chen ◽  
Yi-Chen Chiang ◽  
Yu-Chi Liu ◽  
...  

The structure, magnetic properties, optical properties and adhesion efficiency of CoFeBY films were studied. Co40Fe40B10Y10 alloy was sputtered onto Si (100) with a thickness of 10–50 nm, and then annealed at room temperature, 100 °C, 200 °C and 300 °C for 1 h. X-ray diffraction (XRD) showed that the CoFeBY films deposited at room temperature are amorphous. Annealing at 100 °C gave the films enough thermal energy to change the structure from amorphous to crystalline. After annealing, the CoFeBY thin film showed a body-centered cubic (BCC) CoFeB (110) characteristic peak at 44°. However, the low-frequency alternative-current magnetic susceptibility (χac) and saturation magnetization (MS) increased with the increase of thickness. CoFeBY thin films had the highest χac and MS after annealing at 300 °C compared to that at other temperatures. After annealing at 300 °C, the surface energy of CoFeBY film is the maximum at 50 nm. Higher surface energy indicated stronger adhesion.


2021 ◽  
Author(s):  
Rohith HS ◽  
Prakash Motiram Halami

Abstract Probiotic bacterial adhesion to the epithelial cell is a composite process and in vivo adhesion studies can be strengthened with the improved in vitro models for preliminary screening of potentially adherent strains. With this rationale, the study aimed is the first report to demonstrate the colonizing efficiency of probiotic Bacillus licheniformis MCC 2514 in comparison to Bifidobacterium breve NCIM 5671on HT-29 cell line. B. licheniformis (54.28 ± 0.99%) and Bif. breve (70.23 ± 0.85%) adhered in a higher percentage on fibronectin and mucin, respectively. However, the adhesion was higher for B. licheniformis when compared to Bif. breve. In adhesion score, B. licheniformis obtained about 138.85 ± 12.32, whereas Bif. breve got the score of 43.05 ± 9.12. The same trend continued in the adhesion percentage study, where B. licheniformis adhered 75.5 ± 5.2%, higher than Bif. breve adhered 32.66 ± 3.2%. In invasion assay, both the bacteria significantly decreased the colonization of the pathogen Kocuria rhizophila ATCC 9341 about 97.32 ± 0.81% in the competitive assay, 97.87 ± 0.73% in exclusion assay and 82.19 ± 2.51% in displacement assay. The cytotoxicity effects of the test bacterial strains against HT-29 cell line through MTT assay determined no viability loss in the treated cells. Therefore, the data obtained from the in vitro studies showed that both B. licheniformis and Bif. breve had shown significantly good invasion on pathogen and adhesion capacity on HT-29 cell line.


2021 ◽  
Vol 43 (1) ◽  
pp. 10-19
Author(s):  
Min-Ho Jang ◽  
Yong-Ho Choi ◽  
Heung-Joe Jung ◽  
Yong-Hoon Jeong ◽  
Dong-Heui Kwak

Objectives:The single collector collision (SCC) model is a model that predicts the separation efficiency of particles based on the collision efficiency between microbubbles and particles in the particle separation process. In order to remove micro-plastics (MPs) particles, which have recently been known to be harmful, we tried to analyze the impact and separation efficiency of MPs based on the SCC model and evaluate its application feasibility.Methods:Based on the SCC model, the collision efficiency prediction for MPs particle removal was simulated and the separation efficiency was evaluated. In addition, a series of flotation experiments were conducted using a flotation device that injects microbubbles to remove MPs particles suspended in water, and the experimental results and predicted values were compared.Results and Discussion:Using the SCC model, the collision efficiency according to the size distribution of MPs particles was not significantly different from that of typical particles (clay, kaolin) in water. Based on this collision efficiency, the maximum removal efficiency of MPs particles separated from the water body is predicted to reach about 90%. On the other hand, the initial collision-adhesion coefficient () of the MPs particles based on the SCC model was 0.03 to 0.1, showing a slight difference from the clay particles having the range of 0.3 to 0.4. The flotation separation efficiency of the MPs particles evaluated and predicted by applying this initial collision-adhesion coefficient showed a range similar to the measured value. In addition, the particle separation efficiency according to the increase of the measured bubble volume concentration to improve the particle separation efficiency also showed a pattern similar to the predicted value.Conclusions:In the flotation process, the initial collision-adhesion efficiency of the MPs particles predicted by the SCC model was lower than that of the kaolin particles. Based on the simple and simple model SCC theory, it was confirmed that it can be applied to the flotation separation analysis of MPs particles.


Sign in / Sign up

Export Citation Format

Share Document