Species richness and diversity in different functional groups across environmental stress gradients: a model for marine rocky shores

Ecography ◽  
2011 ◽  
Vol 34 (1) ◽  
pp. 151-161 ◽  
Author(s):  
Ricardo A. Scrosati ◽  
Barbara van Genne ◽  
Christine S. Heaven ◽  
Cortney A. Watt
2016 ◽  
Vol 51 (8) ◽  
pp. 958-966 ◽  
Author(s):  
Anderson Pedro Bernardina Batista ◽  
José Márcio de Mello ◽  
Marcel Régis Raimundo ◽  
Henrique Ferraço Scolforo ◽  
Aliny Aparecida dos Reis ◽  
...  

Abstract: The objective of this work was to analyze the spatial distribution and the behavior of species richness and diversity in a shrub savanna fragment, in 2003 and 2014, using ordinary kriging, in the state of Minas Gerais, Brazil. In both evaluation years, the measurements were performed in a fragment with 236.85 hectares, in which individual trees were measured and identified across 40 plots (1,000 m2). Species richness was determined by the total number of species in each plot, and diversity by the Shannon diversity index. For the variogram study, spatial models were fitted and selected. Then, ordinary kriging was applied and the spatial distribution of the assessed variables was described. A strong spatial dependence was observed between species richness and diversity by the Shannon diversity index (<25% spatial dependence degree). Areas of low and high species diversity and richness were found in the shrub savanna fragment. Spatial distribution behavior shows relative stability regarding the number of species and the Shannon diversity index in the evaluated years.


2012 ◽  
Vol 33 (2) ◽  
pp. 181-197 ◽  
Author(s):  
Krzysztof Pabis ◽  
Jacek Siciński

Is polychaete diversity in the deep sublittoral of an Antarctic fiord related to habitat complexity?Seventy-six species of Polychaeta were found in 19 quantitative samples collected in the deep sublittoral (200-500 m) of Admiralty Bay (South Shetlands). Three assemblages were distinguished by similarity analysis (clustering, nMDS). The soft bottom in depths from 200 to 300m was strongly dominated byMaldane sarsi antarcticaand had very low species richness and diversity. The second assemblage was distinguished in the areas of the sea floor in the same depth range but with aggregations of Ascidiacea and Bryozoa. It was again characterized by high abundance ofMaldane sarsi antarctica, but showed significantly higher species richness and diversity. Diversity of polychaete feeding guilds was also high in these areas. This pattern was probably associated with an increased habitat complexity due to the presence of dense aggregations of large suspension feeders. High species richness and diversity was also noted in the third assemblage, associated with the deepest sublittoral (400-500 m) of Admiralty Bay. This is the area characterized by very stable environmental conditions, where the assemblage was dominated byTharyx cincinnatus, Sternaspissp.,Maldane sarsi antarctica, andAsychis amphiglypta.


2013 ◽  
Vol 6 (4) ◽  
pp. 536-544 ◽  
Author(s):  
Stephen F. Enloe ◽  
Nancy J. Loewenstein ◽  
David W. Held ◽  
Lori Eckhardt ◽  
Dwight K. Lauer

AbstractCogongrass [Imperata cylindrica (L.) Beauv.] is a warm-season, rhizomatous grass native to southeast Asia that has invaded thousands of hectares in the southeastern United States. Its negative impacts on pine forests have been well documented, and aggressive control is widely recommended. Although repeated herbicide treatments are effective for suppression, integrated strategies of prescribed burning coupled with herbicide treatment and revegetation are lacking in pine systems. In particular, longleaf pine forests, which are typically open, fire-dependent, communities, are highly susceptible to cogongrass, which is a pyrogenic species. To address management goals for cogongrass control and herbaceous restoration in longleaf pine forests better, field studies were conducted in southwestern Alabama from 2010 to 2012. Two longleaf pine forests with near-monotypic stands of cogongrass in the understory were selected for study. Treatments included combinations of winter prescribed fire, spring and fall glyphosate herbicide treatments, and seeding a mix of native, herbaceous species. Data were collected for three growing seasons following study initiation, and included seasonal herbaceous species cover and final cogongrass shoot and rhizome biomass. Species richness and diversity were calculated and analyzed to ascertain treatment effects over the duration of the study. Burning slightly improved cogongrass control with glyphosate, but had no effect on total cover, species richness, or species diversity. Three glyphosate treatments reduced total vegetative cover and nearly eliminated cogongrass cover, shoot, and rhizome biomass. Glyphosate and glyphosate + seeding also increased herbaceous species richness and diversity. However, aboveground productivity in treated plots was significantly lower than productivity in the untreated control, which was almost exclusively cogongrass. These studies indicate that glyphosate and integrated strategies utilizing glyphosate and seeding are very useful for cogongrass management and increasing herbaceous species richness and diversity in longleaf pine.


Sign in / Sign up

Export Citation Format

Share Document