A fluorescence in situ hybridization (FISH) analysis with centromere-specific DNA probes of chromosomes 3 and 17 in pleomorphic adenomas and adenoid cystic carcinomas

1995 ◽  
Vol 24 (9) ◽  
pp. 398-401 ◽  
Author(s):  
Xinwei Li ◽  
Tatsuo Tsuji ◽  
Shumin Wen ◽  
Yuka Mimura ◽  
Zhaoyuan Wang ◽  
...  
2014 ◽  
Vol 138 (3) ◽  
pp. 403-409 ◽  
Author(s):  
Jena B. Hudson ◽  
Brian T. Collins

Context.—Fine-needle aspiration (FNA) biopsy of salivary gland neoplasms can have a variety of overlapping appearances. Basaloid neoplasms can be a diagnostic challenge, and FNA cytomorphology alone cannot always provide a definitive diagnosis. Objective.—To examine the incidence and potential utility of detecting a MYB translocation by fluorescence in situ hybridization (FISH) in adenoid cystic carcinomas (AdCCs) and pleomorphic adenoma FNA smears with known surgical outcomes. Design.—Patients who underwent FNA biopsy for surgically confirmed AdCCs and pleomorphic adenomas were identified. Fluorescence in situ hybridization, using commercially available fluorescent-labeled probes, hybridizing to MYB-telomeric and MYB-centromeric, was used to identify the MYB gene and to evaluate it for abnormalities and translocation. Using a fluorescent microscope, 4′,6-diamidino-2-phenylindole (DAPI)-stained, nonoverlapping cells were counted, and 10% or greater abnormal cells were considered positive. Results.—The 10 AdCC and 13 pleomorphic adenoma FNA cases had FISH evaluations performed; 50% (5 of 10) of the AdCC cases showed a MYB abnormality by FISH; 40% (4 of 10) AdCCs showed a positive break-apart signal in most cells (48%–84%). One case (10%) of AdCC showed a trisomy MYB signal pattern without the break-apart translocation pattern. Of the 13 pleomorphic adenomas, none (0%) of the cases showed a MYB translocation or abnormality by FISH. MYB FISH abnormalities showed a 100% positive predictive value, 50% sensitivity, and 100% specificity, when differentiating AdCC from pleomorphic adenoma. Conclusions.— MYB gene abnormalities were present in 50% (5 of 10) of the AdCC cases. This corresponds to the reported prevalence in formalin-fixed, paraffin-embedded tissue for AdCC surgical resections. Using FISH testing for detecting MYB gene abnormalities in the salivary gland of FNA biopsies has the potential to provide additional, helpful ancillary information in diagnosing AdCC.


2018 ◽  
Vol 38 (6) ◽  
pp. 619-622
Author(s):  
Michael Liew ◽  
Leslie R. Rowe ◽  
Phillipe Szankasi ◽  
Christian N. Paxton ◽  
Todd Kelley ◽  
...  

BioTechniques ◽  
1999 ◽  
Vol 26 (6) ◽  
pp. 1068-1072
Author(s):  
Allen T. Christian ◽  
Holly E. Garcia ◽  
James D. Tucker

Genes ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 375 ◽  
Author(s):  
Xiaomei Luo ◽  
Juncheng Liu

We report the cytogenetic map for a collection of species in the Oleaceae, and test similarities among the karyotypes relative to their known species phylogeny. The oligonucleotides 5S ribosomal DNA (rDNA), (AGGGTTT)3, and (TTG)6 were used as fluorescence in situ hybridization (FISH) probes to locate the corresponding chromosomes in three Oleaceae genera: Fraxinus pennsylvanica, Syringa oblata, Ligustrum lucidum, and Ligustrum × vicaryi. Forty-six small chromosomes were identified in four species. (AGGGTTT)3 signals were observed on almost all chromosome ends of four species, but (AGGGTTT)3 played no role in distinguishing the chromosomes but displayed intact chromosomes and could thus be used as a guide for finding chromosome counts. (TTG)6 and 5S rDNA signals discerned several chromosomes located at subterminal or central regions. Based on the similarity of the signal pattern (mainly in number and location and less in intensity) of the four species, the variations in the 5S rDNA and (TTG)6 distribution can be ordered as L. lucidum < L. × vicaryi < F. pennsylvanica < S. oblata. Variations have observed in the three genera. The molecular cytogenetic data presented here might serve as a starting point for further larger-scale elucidation of the structure of the Oleaceae genome, and comparison with the known phylogeny of Oleaceae family.


2018 ◽  
Vol 142 (10) ◽  
pp. 1254-1259 ◽  
Author(s):  
Katherine B. Geiersbach ◽  
Julia A. Bridge ◽  
Michelle Dolan ◽  
Lawrence J. Jennings ◽  
Diane L. Persons ◽  
...  

Context.— Fluorescence in situ hybridization (FISH) and brightfield in situ hybridization (ISH) are 2 clinically approved laboratory methods for detecting ERBB2 (HER2) amplification in breast cancer. Objective.— To compare the performance of FISH and brightfield ISH on proficiency testing administered by the College of American Pathologists Laboratory Accreditation Program. Design.— Retrospective review was performed on 70 tissue core samples in 7 separate proficiency testing surveys conducted between 2009 and 2013. Results.— The samples included 13 consensus-amplified tissue cores, 53 consensus-nonamplified cores, and 4 cores that did not reach consensus for FISH and/or brightfield ISH. There were 2552 individual responses for FISH and 1871 individual responses for brightfield ISH. Consensus response rates were comparable for FISH (2474 of 2524; 98.0%) and brightfield ISH (2135 of 2189; 97.5%). The FISH analysis yielded an average HER2 copy number per cell that was significantly higher (by 2.86; P = .02) compared with brightfield ISH for amplified cores. For nonamplified cores, FISH yielded slightly, but not significantly, higher (by 0.17; P = .10) HER2 copy numbers per cell. There was no significant difference in the average HER2 to control ratio for either consensus-amplified or consensus-nonamplified cores. Participants reported “unable to analyze” more frequently for brightfield ISH (244 of 2453; 9.9%) than they did for FISH (160 of 2684; 6.0%). Conclusions.— Our study indicates a high concordance rate in proficiency testing surveys, with some significant differences noted in the technical performance of these assays. In borderline cases, updated American Society of Clinical Oncology/College of American Pathologists cutoff thresholds that place greater emphasis on HER2 copy number per cell could accentuate those differences between FISH and brightfield ISH.


2003 ◽  
Vol 51 (4) ◽  
pp. 549-551 ◽  
Author(s):  
Anja Weise ◽  
Peter Harbarth ◽  
Uwe Claussen ◽  
Thomas Liehr

Fluorescence in situ hybridization (FISH) on human chromosomes in meta-and interphase is a well-established technique in clinical and tumor cytogenetics and for studies of evolution and interphase architecture. Many different protocols for labeling the DNA probes used for FISH have been published. Here we describe for the first time the successful use of Photoprobe biotin-labeled DNA probes in FISH experiments. Yeast artificial chromosome (YAC) and whole chromosome painting (wcp) probes were tested.


Reproduction ◽  
2003 ◽  
pp. 317-325 ◽  
Author(s):  
I Parrilla ◽  
JM Vazquez ◽  
M Oliver-Bonet ◽  
J Navarro ◽  
J Yelamos ◽  
...  

Successful evaluation of X- and Y-chromosome-bearing sperm separation technology using flow cytometry-cell sorter is of great importance. Fluorescence in situ hybridization (FISH), which allows for the detection of specific nucleic acid sequences on morphologically preserved spermatozoa, is an ideal method for quantitatively and qualitatively assessing the purity of sorted sperm samples. In this study specific pig DNA direct probes for small regions of chromosomes 1 and Y were used. Chromosome 1 was labelled in green and used as internal control to detect a lack of hybridization, whereas chromosome Y was labelled in red. Nick translation was used as the labelling method for the preparation of these probes. Spermatozoa, unsorted and sorted for high and low Y-chromosome purity from ejaculates of five boars, were fixed on slides and two-colour direct FISH was performed for chromosomes 1 and Y. About 500 non-sorted and 200 sorted spermatozoa per sample were scored. The proportion of Y-chromosome-bearing spermatozoa was determined by the presence of a red fluorescent signal on the sperm head and the proportion of X-chromosome-bearing spermatozoa was determined by subtraction. The efficiency of the hybridization procedure was established as near 98% on sorted and unsorted samples. The results of this study confirm that direct FISH using specific pig DNA probes labelled by nick translation provides a useful tool for laboratory validation of sperm separation by flow sorting technology. Moreover, the ease of nick translation and the quality of the fluorescent signal obtained using this method makes this procedure the most appropriate method for labelling pig DNA probes to be used for direct FISH on pig spermatozoa.


Sign in / Sign up

Export Citation Format

Share Document