Effects of Extracellular Matrix Molecules on Subepidermal Neural Crest Cell Migration in Wild Type and White Mutant (dd) Axolotl Embryos

1996 ◽  
Vol 9 (1) ◽  
pp. 18-27 ◽  
Author(s):  
LENNART OLSSON ◽  
KRISTIAN SVENSSON ◽  
ROBERTO PERRIS
Development ◽  
1990 ◽  
Vol 109 (3) ◽  
pp. 533-551 ◽  
Author(s):  
R. Perris ◽  
J. Lofberg ◽  
C. Fallstrom ◽  
Y. von Boxberg ◽  
L. Olsson ◽  
...  

The skin of the white mutant axolotl larva is pigmented differently from that of the normal dark due to a local inability of the extracellular matrix (ECM) to support subepidermal migration of neural crest-derived pigment cell precursors. In the present study, we have compared the ECM of neural crest migratory pathways of normal dark and white mutant embryos ultrastructurally, immunohistochemically and biochemically to disclose differences in their structure/composition that could be responsible for the restriction of subepidermal neural crest cell migration in the white mutant axolotl. When examined by electron microscopy, in conjunction with computerized image analysis, the structural assembly of interstitial and basement membrane ECMs of the two embryos was found to be largely comparable. At stages of initial neural crest cell migration, however, fixation of the subepidermal ECM in situ with either Karnovsky-ruthenium red or with periodate-lysine-paraformaldehyde followed by ruthenium red-containing fixatives, revealed that fibrils of the dark matrix were significantly more abundant in associated electron-dense granules. This ultrastructural discrepancy of the white axolotl ECM was specific for the subepidermal region and suggested an abnormal proteoglycan distribution. Dark and white matrices of the medioventral migratory route of neural crest cells had a comparable appearance but differed from the corresponding subepidermal ECMs. Immunohistochemistry revealed only minor differences in the distribution of fibronectin, laminin, collagen types I, and IV, whereas collagen type III appeared differentially distributed in the two embryos. Chondroitin- and chondroitin-6-sulfate-rich proteoglycans were more prevalent in the white mutant embryo than in the dark, especially in the subepidermal space. Membrane microcarriers were utilized to explant site-specifically native ECM for biochemical analysis. Two-dimensional gel electrophoresis of these regional matrices revealed a number of differences in their protein content, principally in constituents of apparent molecular masses of 30–90,000. Taken together our observations suggest that local divergences in the concentration/assembly of low and high molecular mass proteins and proteoglycans of the ECM encountered by the moving neural crest cells account for their disparate migratory behavior in the white mutant axolotl.


Development ◽  
1986 ◽  
Vol 91 (1) ◽  
pp. 267-282
Author(s):  
J. Sternberg ◽  
S. J. Kimber

The distribution of the extracellular matrix molecules fibronectin, laminin and entactin was studied in frozen sections of 9½-day mouse embryos in order to relate their presence to neural crest cell migration. It was found that all three components were present in basement membranes, laminin and entactin being mainly restricted to these. Fibronectin was present at high levels in basement membranes and extracellular spaces throughout the embryo, including the regions of neural crest cell migration. Fibronectin is known to affect migration in a variety of cell systems, so its presence in the embryo at the time of migration may indicate that it is influencing cell movement. This influence is likely to be via the cell surface through interactions with other matrix components such as glycosaminoglycans, and possibly entactin and laminin.


Author(s):  
Jean Paul Thiery ◽  
Roberto Rovasio ◽  
Annie Delouvée ◽  
Michel Vincent ◽  
Jean Loup Duband ◽  
...  

2019 ◽  
Vol 63 (1-2) ◽  
pp. 29-35
Author(s):  
Natsumi Yokote ◽  
Marianna Y. Suzuki-Kosaka ◽  
Tatsuo Michiue ◽  
Takahiko Hara ◽  
Kosuke Tanegashima

Latrophilin2 (Lphn2) is an adhesion-class of G protein-coupled receptor with an unknown function in development. Here, we show that Xenopus laevis lphn2 (Xlphn2) is involved in the migration and differentiation of neural crest (NC) cells and placode patterning in Xenopus laevis embryos. Although Xlphn2 mRNA was detected throughout embryogenesis, it was expressed more abundantly in the placode region. Morpholino antisense oligonucleotide-mediated knockdown of Xlphn2 caused abnormal migration of NC cells, irregular epibranchial placode segmentation, and defective cartilage formation. Transplantation of fluorescently-labeled NC regions of wild-type embryos into Xlphn2 morpholino-injected embryos reproduced the defective NC cell migration, indicating that Xlphn2 regulates the migration of NC cells in a non-cell autonomous manner. Our results suggest that Xlphn2 is essential for placode patterning and as a guidance molecule for NC cells.


Sign in / Sign up

Export Citation Format

Share Document