Phenobarbital Enhances the Aldehyde Dehydrogenase Activity of Rat Hepatocytes in Vitro and in Vivo

2009 ◽  
Vol 59 (5) ◽  
pp. 403-409 ◽  
Author(s):  
Marios Marselos ◽  
George Michalopoulos
Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2429-2429
Author(s):  
Alice M.S. Cheung ◽  
Connie J. Eaves

Abstract Abstract 2429 Poster Board II-406 Human cord blood (CB) has emerged as an attractive source of hematopoietic cells for patients lacking a suitable donor. However, marked delays in platelet and immune recovery pose significant challenges to the use of CB cells as transplants for either children or adult patients. These difficulties in the use of CB have been attributed to low absolute numbers of repopulating cells (RCs) in most CB units which is not readily overcome by simply combining multiple units. Xenotransplantation of human hematopoietic cells into highly immunodeficient sublethally irradiated NOD/SCID mice has proven to be a powerful approach to characterize different types of primitive human hematopoietic cells with repopulating potential. However, the residual NK activity intrinsic to NOD/SCID mice poses a significant barrier to the engraftment of intermediate types of repopulating human cells and also to the terminal stages of their differentiation, as shown by recent studies using more immunodeficient mice as hosts. Nevertheless, the cells responsible for early platelet recovery post-transplant and factors that regulate their activity remain largely unknown. To address this issue, we have developed a quantitative and sensitive assay for characterizing the phenotypes of human CB cells that regenerate mature platelets detectable in the blood of NOD/SCID-IL-2Rγc-/- mice 3-6 weeks post-transplant. Lineage marker-negative (Lin-) human CB cells were stained with Aldefluor and then those with low light side-scattering properties were further separated by FACS according to whether they displayed aldehyde dehydrogenase activity above (ALDH+) or below (ALDH-) that detected in the presence of an ALDH inhibitor. Assays of different pooled human CB preparations showed that the most primitive class of in vitro megakaryocyte (Mk) colony-forming cells and cells responsible for rapid human platelet production in NOD/SCID-IL-2Rγc-/- mice were variably and comparably distributed between the small ALDH+ and prevalent ALDH- fractions. From 3 experiments, the following values were obtained for the ALDH+ and ALDH- subsets, respectively; ALDH+ - mature CFU-Mk = 47.8±21.3% of the total Lin- fraction, intermediate CFU-Mk = 66.3±25.4%, primitive CFU-Mk = 75.5±14.0%, 3-week platelet-producing STRC = 63.8±12.3%, 6-week platelet-producing STRC = 81.5±5.8%; and ALDH- - mature CFU-Mk = 52.2±21.3% of the total Lin- fraction, intermediate CFU-Mk = 33.7±25.4%, primitive CFU-Mk = 24.5±14.0%, 3-week platelet-producing STRC = 36.2±12.3%, 6-week platelet-producing STRC = 18.5±5.8%. Limiting dilution assays revealed 1 in 830 Lin-ALDH+ CB cells to be a cell that can produce detectable platelets in vivo within 3 weeks (95% CI = 1 in 534 to 1 in 1290) but only 1 in 1996 (95% CI = 1 in 1226 to 1 in 3247) within 6 weeks. The present study demonstrates the feasibility of using NOD/SCID-IL-2Rγc-/- mice for the sensitive detection of human CB cells with in vivo platelet regenerating activity and suggests that these may be closely related to primitive cells with in vitro Mk clonogenic activity (>50 Mk per colony). Biologically important platelet progenitors may thus be heterogeneous with respect to ALDH+ activity. Disclosures: No relevant conflicts of interest to declare.


1993 ◽  
Vol 21 (1) ◽  
pp. 38-42
Author(s):  
Romana Pulci ◽  
Donatella Moneta ◽  
Philippe Dostert ◽  
Marco Brughera ◽  
Giovanna Scampini ◽  
...  

The aim of this study was to verify an in vitro model of hepatotoxicity, designed to assess the production of reactive species from biologically-inert chemicals through their metabolic transformation. One example is allyl alcohol, which produces acrolein through the action of the enzyme alcohol dehydrogenase. Acrolein is a highly hepatotoxic aldehyde which is detoxified to acrylic acid by aldehyde dehydrogenase (ALDH). A deficiency of this enzyme, common in some Asian populations, can give rise to pathological conditions of hepatotoxicity. Isolated rat hepatocytes were incubated with allyl alcohol with and without cyanamide, a known inhibitor of ALDH. The toxicity of allyl alcohol, assessed on the basis of release of glutamic-oxaloacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT) and lactate dehydrogenase (LDH) into the culture medium, was dramatically increased by the addition of cyanamide. In vivo, the same treatment scheme was used in rats treated with allyl alcohol with or without cyanamide pretreatment. It was also demonstrated that allyl alcohol toxicity is dramatically enhanced by the addition of an aldehyde dehydrogenase inhibitor, as shown by plasma levels of hepatic enzymes (GOT, GPT and LDH) and by histological findings. We believe that this in vitro model, involving the use of enzyme inhibitors, could be useful for verification of the hypothesis that hepatotoxins, such as acrolein, are produced from some pharmaceutical and other chemical compounds.


1989 ◽  
Vol 259 (3) ◽  
pp. 791-797 ◽  
Author(s):  
P W H Heinstra ◽  
B W Geer ◽  
D Seykens ◽  
M Langevin

Both aldehyde dehydrogenase (ALDH, EC 1.2.1.3) and the aldehyde dehydrogenase activity of alcohol dehydrogenase (ADH, EC 1.1.1.1) were found to coexist in Drosophila melanogaster larvae. The enzymes, however, showed different inhibition patterns with respect to pyrazole, cyanamide and disulphiram. ALDH-1 and ALDH-2 isoenzymes were detected in larvae by electrophoretic methods. Nonetheless, in tracer studies in vivo, more than 75% of the acetaldehyde converted to acetate by the ADH ethanol-degrading pathway appeared to be also catalysed by the ADH enzyme. The larval fat body probably was the major site of this pathway.


Sign in / Sign up

Export Citation Format

Share Document