Elemental carbon deposition to Svalbard snow from Norwegian settlements and long-range transport

Tellus B ◽  
2011 ◽  
Vol 63 (3) ◽  
pp. 340-351 ◽  
Author(s):  
Borgar Aamaas ◽  
Carl Egede Bøggild ◽  
Frode Stordal ◽  
Terje Berntsen ◽  
Kim Holmèn ◽  
...  
Tellus B ◽  
2011 ◽  
Vol 63 (3) ◽  
Author(s):  
Borgar Aamaas ◽  
Carl Egede Bøggild ◽  
Frode Stordal ◽  
Terje Berntsen ◽  
Kim Holmén ◽  
...  

2018 ◽  
Vol 18 (18) ◽  
pp. 13581-13600 ◽  
Author(s):  
Ying Ji ◽  
Xiaofei Qin ◽  
Bo Wang ◽  
Jian Xu ◽  
Jiandong Shen ◽  
...  

Abstract. To evaluate the effect of temporary emission control measures on air quality during the 2016 G20 summit held in Hangzhou, China, an intensive field campaign was conducted with a focus on aerosol chemistry and gaseous precursors from 15 August to 12 September 2016. The concentrations of fine particles were reduced during the intense emission control stages, with the reduction of carbonaceous matter being mostly responsible for this observed decrease. This, in turn, was mainly ascribed to the decrease of secondary organic aerosols via the suppression of daytime peak secondary organic carbon (SOC)formation. Although the regional joint control was enacted extending to the Yangtze River Delta region, the effect of long-range transport on the air quality of Hangzhou was ubiquitous. Unexpectedly high NOx concentrations were observed during the control stage, when the strictest restriction on vehicles was implemented, owing to contributions from upstream populous regions such as Jiangsu and Shandong provinces. In addition, the continental outflow traveling over the ocean triggered a short pollution episode on the first day of the G20 summit, resulting in a significant enhancement of the nitrogen/sulfur oxidation rates. In the wake of the summit, all air pollutants evidently rebounded after the various control measures were lifted. Overall, the fraction of secondary inorganic aerosols (SIA; in this case sulfate, nitrate, and ammonium aerosols – SNA) in PM2.5 increased as relative humidity increased; however, the overall concentration of PM2.5 did not increase. Aerosol components that had distinctly different sources and formation mechanisms, e.g., sulfate/nitrate and elemental carbon, exclusively showed strong correlations during the regional/long-range transport episodes. The sulfate, nitrate, and ammonium to elemental carbon (SNA∕EC) ratio, which was used as a proxy for assessing the extent of secondary inorganic aerosol formation, was found to be significantly enhanced under transport conditions from northern China. This study highlighted that emission control strategies were beneficial for curbing particulate pollution, in addition to the fact that regional/long-range transport may offset local emission control effects to some extent.


2015 ◽  
Vol 15 (9) ◽  
pp. 5047-5068 ◽  
Author(s):  
K. Dzepina ◽  
C. Mazzoleni ◽  
P. Fialho ◽  
S. China ◽  
B. Zhang ◽  
...  

Abstract. Free tropospheric aerosol was sampled at the Pico Mountain Observatory located at 2225 m above mean sea level on Pico Island of the Azores archipelago in the North Atlantic. The observatory is located ~ 3900 km east and downwind of North America, which enables studies of free tropospheric air transported over long distances. Aerosol samples collected on filters from June to October 2012 were analyzed to characterize organic carbon, elemental carbon, and inorganic ions. The average ambient concentration of aerosol was 0.9 ± 0.7 μg m−3. On average, organic aerosol components represent the largest mass fraction of the total measured aerosol (60 ± 51%), followed by sulfate (23 ± 28%), nitrate (13 ± 10%), chloride (2 ± 3%), and elemental carbon (2 ± 2%). Water-soluble organic matter (WSOM) extracted from two aerosol samples (9/24 and 9/25) collected consecutively during a pollution event were analyzed using ultrahigh-resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Approximately 4000 molecular formulas were assigned to each of the mass spectra in the range of m/z 100–1000. The majority of the assigned molecular formulas had unsaturated structures with CHO and CHNO elemental compositions. FLEXPART retroplume analyses showed the sampled air masses were very aged (average plume age > 12 days). These aged aerosol WSOM compounds had an average O/C ratio of ~ 0.45, which is relatively low compared to O/C ratios of other aged aerosol. The increase in aerosol loading during the measurement period of 9/24 was linked to biomass burning emissions from North America by FLEXPART retroplume analysis and Moderate Resolution Imaging Spectroradiometer (MODIS) fire counts. This was confirmed with biomass burning markers detected in the WSOM and with the morphology and mixing state of particles as determined by scanning electron microscopy. The presence of markers characteristic of aqueous-phase reactions of phenolic species suggests that the aerosol collected at the Pico Mountain Observatory had undergone cloud processing before reaching the site. Finally, the air masses of 9/25 were more aged and influenced by marine emissions, as indicated by the presence of organosulfates and other species characteristic of marine aerosol. The change in the air masses for the two samples was corroborated by the changes in ethane, propane, and ozone, morphology of particles, as well as by the FLEXPART retroplume simulations. This paper presents the first detailed molecular characterization of free tropospheric aged aerosol intercepted at a lower free troposphere remote location and provides evidence of low oxygenation after long-range transport. We hypothesize this is a result of the selective removal of highly aged and polar species during long-range transport, because the aerosol underwent a combination of atmospheric processes during transport facilitating aqueous-phase removal (e.g., clouds processing) and fragmentation (e.g., photolysis) of components.


Grana ◽  
1988 ◽  
Vol 27 (3) ◽  
pp. 203-207 ◽  
Author(s):  
Annie Gérard Peeters ◽  
Heinrich Zoller

Sign in / Sign up

Export Citation Format

Share Document