scholarly journals The genetic control of chromosome segregation in Drosophila melanogaster

Hereditas ◽  
2009 ◽  
Vol 87 (2) ◽  
pp. 163-172 ◽  
Author(s):  
CLAES RAMEL ◽  
JACK VALENTIN
1985 ◽  
Vol 20 (3-4) ◽  
pp. 171-177 ◽  
Author(s):  
Malcolm B. Baird ◽  
Joseph Liszczynskyj

Open Biology ◽  
2016 ◽  
Vol 6 (2) ◽  
pp. 150236 ◽  
Author(s):  
Yahui Liu ◽  
Arsen Petrovic ◽  
Pascaline Rombaut ◽  
Shyamal Mosalaganti ◽  
Jenny Keller ◽  
...  

Accurate chromosome segregation during mitosis and meiosis is crucial for cellular and organismal viability. Kinetochores connect chromosomes with spindle microtubules and are essential for chromosome segregation. These large protein scaffolds emerge from the centromere, a specialized region of the chromosome enriched with the histone H3 variant CENP-A. In most eukaryotes, the kinetochore core consists of the centromere-proximal constitutive centromere-associated network (CCAN), which binds CENP-A and contains 16 subunits, and of the centromere-distal Knl1 complex, Mis12 complex, Ndc80 complex (KMN) network, which binds microtubules and contains 10 subunits. In the fruitfly, Drosophila melanogaster, the kinetochore underwent remarkable simplifications. All CCAN subunits, with the exception of centromeric protein C (CENP-C), and two KMN subunits, Dsn1 and Zwint, cannot be identified in this organism. In addition, two paralogues of the KMN subunit Nnf1 (Nnf1a and Nnf1b) are present. Finally, the Spc105R subunit, homologous to human Knl1/CASC5, underwent considerable sequence changes in comparison with other organisms. We combined biochemical reconstitution with biophysical and structural methods to investigate how these changes reflect on the organization of the Drosophila KMN network. We demonstrate that the Nnf1a and Nnf1b paralogues are subunits of distinct complexes, both of which interact directly with Spc105R and with CENP-C, for the latter of which we identify a binding site on the Mis12 subunit. Our studies shed light on the structural and functional organization of a highly divergent kinetochore particle.


1971 ◽  
Vol 62 (6) ◽  
pp. 345-348 ◽  
Author(s):  
THOMAS J. MIZIANTY ◽  
STEVEN T. CASE

2017 ◽  
Vol 216 (6) ◽  
pp. 1597-1608 ◽  
Author(s):  
Travis Karg ◽  
Mary Williard Elting ◽  
Hannah Vicars ◽  
Sophie Dumont ◽  
William Sullivan

Although poleward segregation of acentric chromosomes is well documented, the underlying mechanisms remain poorly understood. Here, we demonstrate that microtubules play a key role in poleward movement of acentric chromosome fragments generated in Drosophila melanogaster neuroblasts. Acentrics segregate with either telomeres leading or lagging in equal frequency and are preferentially associated with peripheral bundled microtubules. In addition, laser ablation studies demonstrate that segregating acentrics are mechanically associated with microtubules. Finally, we show that successful acentric segregation requires the chromokinesin Klp3a. Reduced Klp3a function results in disorganized interpolar microtubules and shortened spindles. Normally, acentric poleward segregation occurs at the periphery of the spindle in association with interpolar microtubules. In klp3a mutants, acentrics fail to localize and segregate along the peripheral interpolar microtubules and are abnormally positioned in the spindle interior. These studies demonstrate an unsuspected role for interpolar microtubules in driving acentric segregation.


1979 ◽  
Vol 32 (1) ◽  
pp. 127 ◽  
Author(s):  
R Nassar

A Drosophila melanogaster population was exposed for 25 generations to 60 pg tetraethyllead per gram of medium. Selection over this period resulted in an increase in fecundity, hatchability and larva-to-adult viability. Chromosome assay showed that response in these traits was generally under additive genetic control in conformity with existing results in the literature on the genetics of resistance to acute environmental stress in D. melanogaster.


Genetics ◽  
1987 ◽  
Vol 115 (1) ◽  
pp. 143-151
Author(s):  
Andrew G Clark

ABSTRACT Functional variation among Y chromosomes in natural populations of Drosophila melanogaster was assayed by a segregation study. A total of 36 Y chromosomes was extracted and ten generations of replacement backcrossing yielded stocks with Y chromosomes in two different genetic backgrounds. Eleven of the Y chromosomes were from diverse geographic origins, and the remaining 25 were from locally captured flies. Segregation of sexes in adult offspring was scored for the four possible crosses among the two backgrounds with each Y chromosome. Although the design confounds meiotic drive and effects on viability, statistical partitioning of these effects reveals significant variation among lines in Y chromosome segregation. Results are discussed in regards to models of Y-linked segregation and viability effects, which suggest that Y-linked adaptive polymorphism is unlikely.


Sign in / Sign up

Export Citation Format

Share Document