scholarly journals Ionizing radiation utilizes c-Jun N-terminal kinase for amplification of mitochondrial apoptotic cell death in human cervical cancer cells

FEBS Journal ◽  
2008 ◽  
Vol 275 (9) ◽  
pp. 2096-2108 ◽  
Author(s):  
Min-Jung Kim ◽  
Kee-Ho Lee ◽  
Su-Jae Lee
Author(s):  
Pei‑Yu Yang ◽  
Dan‑Ning Hu ◽  
Ying‑Hsien Kao ◽  
I‑Ching Lin ◽  
Fu‑Shing Liu

2004 ◽  
Vol 64 (24) ◽  
pp. 8960-8967 ◽  
Author(s):  
Young-Hee Kang ◽  
Min-Jung Yi ◽  
Min-Jung Kim ◽  
Moon-Taek Park ◽  
Sangwoo Bae ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Ebtesam S. Al-Sheddi ◽  
Nida N. Farshori ◽  
Mai M. Al-Oqail ◽  
Shaza M. Al-Massarani ◽  
Quaiser Saquib ◽  
...  

In this study, silver nanoparticles (AgNPs) were synthesized using aqueous extract of Nepeta deflersiana plant. The prepared AgNPs (ND-AgNPs) were examined by ultraviolet-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), and energy dispersive spectroscopy (EDX). The results obtained from various characterizations revealed that average size of synthesized AgNPs was 33 nm and in face-centered-cubic structure. The anticancer potential of ND-AgNPs was investigated against human cervical cancer cells (HeLa). The cytotoxic response was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), neutral red uptake (NRU) assays, and morphological changes. Further, the influence of cytotoxic concentrations of ND-AgNPs on oxidative stress markers, reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP), cell cycle arrest and apoptosis/necrosis was studied. The cytotoxic response observed was in a concentration-dependent manner. Furthermore, the results also showed a significant increase in ROS and lipid peroxidation (LPO), along with a decrease in MMP and glutathione (GSH) levels. The cell cycle analysis and apoptosis/necrosis assay data exhibited ND-AgNPs-induced SubG1 arrest and apoptotic/necrotic cell death. The biosynthesized AgNPs-induced cell death in HeLA cells suggested the anticancer potential of ND-AgNPs. Therefore, they may be used to treat the cervical cancer cells.


Autophagy ◽  
2009 ◽  
Vol 5 (4) ◽  
pp. 451-460 ◽  
Author(s):  
Keng-Fu Hsu ◽  
Chao-Liang Wu ◽  
Soon-Cen Huang ◽  
Ching-Ming Wu ◽  
Jenn-Ren Hsiao ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Subhabrata Paul ◽  
Debashis Patra ◽  
Rita Kundu

Abstract Phyllanthus amarus is widely grown in this sub-continent and used traditionally to treat many common ailments. In the present study, lignan rich fraction of P. amarus extract was used on cervical cancer cell lines (HeLa, SiHa and C33A) to study it’s mechanism of cell death induction. As the cells were treated with IC50 doses of LRF, characteristic apoptotic features were observed. Increased sub G0 population were observed both in Hela and C33 cells, while G1/S arrest was observed in SiHa cells than their untreated counterparts. Increased production of ROS and change in MMP were also detected in the treated cells. Presence of γH2AX, was observed by immunofluorescence. Reduced expression of HPV (16/18) as well as ET-1, an autocrine growth substance, were observed in the treated cells. Immunoblotting as well as ICFC studies showed enhanced expressions of BAX, Caspase 3 and PARP (cleaved) in the treated cells. A major lignan, phyllanthin was isolated from the chloroform fraction and showed strong irreversible affinities for viral E6 and MDM2 in in silico analysis. The study conclusively indicates that LRF has the potential to induce apoptotic cell death in cervical cancer cells by activation of p53 and p21 against DNA damage.


Sign in / Sign up

Export Citation Format

Share Document