scholarly journals Current in vivo Assays for Cutaneous Toxicity: Local and Systemic Toxicity Testing

2004 ◽  
Vol 95 (5) ◽  
pp. 201-208 ◽  
Author(s):  
Carol S. Auletta
2013 ◽  
Vol 32 (1) ◽  
pp. 47-63 ◽  
Author(s):  
Pekka Kohonen ◽  
Emilio Benfenati ◽  
David Bower ◽  
Rebecca Ceder ◽  
Michael Crump ◽  
...  

2011 ◽  
Vol 86 (1) ◽  
pp. 13-15 ◽  
Author(s):  
Jan G. Hengstler ◽  
Rosemarie Marchan ◽  
Marcel Leist

2004 ◽  
Vol 32 (4) ◽  
pp. 437-459 ◽  
Author(s):  
Alessandra Gennari ◽  
Christine van den Berghe ◽  
Silvia Casati ◽  
José Castell ◽  
Cecilia Clemedson ◽  
...  

2018 ◽  
Vol 18 (15) ◽  
pp. 1275-1286 ◽  
Author(s):  
Luiz Felipe Domingues Passero ◽  
Lucas Antal Cruz ◽  
Gabriela Santos-Gomes ◽  
Eliana Rodrigues ◽  
Márcia Dalastra Laurenti ◽  
...  

Leishmaniasis is a neglected disease caused by protozoan belonging to the Leishmania genus. There are at least 16 pathogenic species for humans that are able to cause different clinical forms, such as cutaneous or visceral leishmaniasis. In spite of the different species and clinical forms, the treatment is performed with few drug options that, in most cases, are considered outdated. In addition, patients under classical treatment show serious side effects during drug administration, moreover parasites are able to become resistant to medicines. Thus, it is believed and well accepted that is urgent and necessary to develop new therapeutic options to overpass these concerns about conventional therapy of leishmaniasis. The present review will focus on the efficacy, side effects and action mechanism of classic drugs used in the treatment of leishmaniasis, as well as the importance of traditional knowledge for directing a rational search toward the discovery and characterization of new and effective molecules (in vivo assays) from plants to be used against leishmaniasis.


2017 ◽  
Vol 17 (5) ◽  
pp. 712-718 ◽  
Author(s):  
Cristiene Costa Carneiro ◽  
Aroldo Vieira de Moraes-Filho ◽  
Amanda Silva Fernandes ◽  
Suzana da Costa Santos ◽  
Daniela de Melo e Silva ◽  
...  
Keyword(s):  

1993 ◽  
Vol 21 (2) ◽  
pp. 191-195 ◽  
Author(s):  
Knut-Jan Andersen ◽  
Erik Ilsø Christensen ◽  
Hogne Vik

The tissue culture of multicellular spheroids from the renal epithelial cell line LLC-PK1 (proximal tubule) is described. This represents a biological system of intermediate complexity between renal tissue in vivo and simple monolayer cultures. The multicellular structures, which show many similarities to kidney tubules in vivo, including a vectorial water transport, should prove useful for studying the potential nephrotoxicity of drugs and chemicals in vitro. In addition, the propagation of renal epithelial cells as multicellular spheroids in serum-free culture may provide information on the release of specific biological parameters, which may be suppressed or masked in serum-supplemented media.


Author(s):  
Danlei Wang ◽  
Maartje H. Rietdijk ◽  
Lenny Kamelia ◽  
Peter J. Boogaard ◽  
Ivonne M. C. M. Rietjens

AbstractDevelopmental toxicity testing is an animal-intensive endpoints in toxicity testing and calls for animal-free alternatives. Previous studies showed the applicability of an in vitro–in silico approach for predicting developmental toxicity of a range of compounds, based on data from the mouse embryonic stem cell test (EST) combined with physiologically based kinetic (PBK) modelling facilitated reverse dosimetry. In the current study, the use of this approach for predicting developmental toxicity of polycyclic aromatic hydrocarbons (PAHs) was evaluated, using benzo[a]pyrene (BaP) as a model compound. A rat PBK model of BaP was developed to simulate the kinetics of its main metabolite 3-hydroxybenzo[a]pyrene (3-OHBaP), shown previously to be responsible for the developmental toxicity of BaP. Comparison to in vivo kinetic data showed that the model adequately predicted BaP and 3-OHBaP blood concentrations in the rat. Using this PBK model and reverse dosimetry, a concentration–response curve for 3-OHBaP obtained in the EST was translated into an in vivo dose–response curve for developmental toxicity of BaP in rats upon single or repeated dose exposure. The predicted half maximal effect doses (ED50) amounted to 67 and 45 mg/kg bw being comparable to the ED50 derived from the in vivo dose–response data reported for BaP in the literature, of 29 mg/kg bw. The present study provides a proof of principle of applying this in vitro–in silico approach for evaluating developmental toxicity of BaP and may provide a promising strategy for predicting the developmental toxicity of related PAHs, without the need for extensive animal testing.


1995 ◽  
Vol 23 (4) ◽  
pp. 491-496
Author(s):  
Hanna Tähti ◽  
Leila Vaalavirta ◽  
Tarja Toimela

— There are several hundred industrial chemicals with neurotoxic potential. The neurotoxic risks of most of these chemicals are unknown. Additional methods are needed to assess the risks more effectively and to elucidate the mechanisms of neurotoxicity more accurately than is possible with the conventional methods. This paper deals with general tasks concerning the use of in vitro models in the evaluation of neurotoxic risks. It is based on our previous studies with various in vitro models and on recent literature. The induction of glial fibrillary acidic protein in astrocyte cultures after treatment with known neurotoxicants (mercury compounds and aluminium) is discussed in more detail as an important response which can be detected in vitro. When used appropriately with in vivo tests and with previous toxicological data, in vitro neurotoxicity testing considerably improves risk assessment. The incorporation of in vitro tests into the early stages of risk evaluation can reduce the number of animals used in routine toxicity testing, by identifying chemicals with high neurotoxic potential.


2020 ◽  
Vol 6 (4) ◽  
pp. 287
Author(s):  
Daniela Costa ◽  
Rui M. Tavares ◽  
Paula Baptista ◽  
Teresa Lino-Neto

An increase in cork oak diseases caused by Biscogniauxia mediterranea and Diplodia corticola has been reported in the last decade. Due to the high socio-economic and ecologic importance of this plant species in the Mediterranean Basin, the search for preventive or treatment measures to control these diseases is an urgent need. Fungal endophytes were recovered from cork oak trees with different disease severity levels, using culture-dependent methods. The results showed a higher number of potential pathogens than beneficial fungi such as cork oak endophytes, even in healthy plants. The antagonist potential of a selection of eight cork oak fungal endophytes was tested against B. mediterranea and D. corticola by dual-plate assays. The tested endophytes were more efficient in inhibiting D. corticola than B. mediterranea growth, but Simplicillium aogashimaense, Fimetariella rabenhorstii, Chaetomium sp. and Alternaria alternata revealed a high potential to inhibit the growth of both. Simplicillium aogashimaense caused macroscopic and microscopic mycelial/hyphal deformations and presented promising results in controlling both phytopathogens’ growth in vitro. The evaluation of the antagonistic potential of non-volatile and volatile compounds also revealed that A. alternata compounds could be further explored for inhibiting both pathogens. These findings provide valuable knowledge that can be further explored in in vivo assays to find a suitable biocontrol agent for these cork oak diseases.


Sign in / Sign up

Export Citation Format

Share Document