Conventional Versus Natural Alternative Treatments for Leishmaniasis: A Review

2018 ◽  
Vol 18 (15) ◽  
pp. 1275-1286 ◽  
Author(s):  
Luiz Felipe Domingues Passero ◽  
Lucas Antal Cruz ◽  
Gabriela Santos-Gomes ◽  
Eliana Rodrigues ◽  
Márcia Dalastra Laurenti ◽  
...  

Leishmaniasis is a neglected disease caused by protozoan belonging to the Leishmania genus. There are at least 16 pathogenic species for humans that are able to cause different clinical forms, such as cutaneous or visceral leishmaniasis. In spite of the different species and clinical forms, the treatment is performed with few drug options that, in most cases, are considered outdated. In addition, patients under classical treatment show serious side effects during drug administration, moreover parasites are able to become resistant to medicines. Thus, it is believed and well accepted that is urgent and necessary to develop new therapeutic options to overpass these concerns about conventional therapy of leishmaniasis. The present review will focus on the efficacy, side effects and action mechanism of classic drugs used in the treatment of leishmaniasis, as well as the importance of traditional knowledge for directing a rational search toward the discovery and characterization of new and effective molecules (in vivo assays) from plants to be used against leishmaniasis.

2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Lynn A. Hyde ◽  
Qi Zhang ◽  
Robert A. Del Vecchio ◽  
Prescott T. Leach ◽  
Mary E. Cohen-Williams ◽  
...  

Substantial evidence implicates -amyloid (A) peptides in the etiology of Alzheimer’s disease (AD). A is produced by the proteolytic cleavage of the amyloid precursor protein by - and -secretase suggesting that -secretase inhibition may provide therapeutic benefit for AD. Although many -secretase inhibitors have been shown to be potent at lowering A, some have also been shown to have side effects following repeated administration. All of these side effects can be attributed to altered Notch signaling, another -secretase substrate. Here we describe the in vivo characterization of the novel -secretase inhibitor SCH 697466 in rodents. Although SCH 697466 was effective at lowering A, Notch-related side effects in the intestine and thymus were observed following subchronic administration at doses that provided sustained and complete lowering of A. However, additional studies revealed that both partial but sustained lowering of Aand complete but less sustained lowering of A were successful approaches for managing Notch-related side effects. Further, changes in several Notch-related biomarkers paralleled the side effect observations. Taken together, these studies demonstrated that, by carefully varying the extent and duration of A lowering by -secretase inhibitors, it is possible to obtain robust and sustained lowering of A without evidence of Notch-related side effects.


1996 ◽  
Vol 63 (4) ◽  
pp. 441-444
Author(s):  
P. Checchin ◽  
G. Anselmo

Bladder hyperactivity is a serious pathology with a high clinical incidence. Various drugs have been used to try to inhibit involuntary detrusorial contractions and to increase bladder capacity. The authors describe the properties, action mechanism, clinical use and side effects of the main drugs analysed. Most of the data regarding drug influence on the vesico-urethral apparatus are obtained from “in vitro” or “in-vivo” studies on animals and therefore cannot always be related to the clinical effects that would occur in man. It is still difficult to find an “ideal” drug with high detrusor selectivity, due to both the lack of knowledge on neuro-mediators and the difficulty in identifying receptors and “action sites”.


2002 ◽  
Vol 70 (7) ◽  
pp. 3777-3784 ◽  
Author(s):  
Ulrich Heininger ◽  
Peggy A. Cotter ◽  
Howard W. Fescemyer ◽  
Guillermo Martinez de Tejada ◽  
Ming H. Yuk ◽  
...  

ABSTRACT The genomes of three closely related bordetellae are currently being sequenced, thus providing an opportunity for comparative genomic approaches driven by an understanding of the comparative biology of these three bacteria. Although the other strains being sequenced are well studied, the strain of Bordetella parapertussis chosen for sequencing is a recent human clinical isolate (strain 12822) that has yet to be characterized in detail. This investigation reports the first phenotypic characterization of this strain, which will likely become the prototype for this species in comparison with the prototype strains of B. pertussis (Tohama I), B. bronchiseptica (RB50), and other isolates of B. parapertussis. Multiple in vitro and in vivo assays distinguished each species. B. parapertussis was more similar to B. bronchiseptica than to B. pertussis in many assays, including in BvgS signaling characteristics, presence of urease activity, regulation of urease expression by BvgAS, virulence in the respiratory tracts of immunocompromised mice, induction of anti-Bordetella antibodies, and serum antimicrobial resistance. In other assays, B. parapertussis was distinct from all other species (in pigment production) or more similar to B. pertussis (by lack of motility and cytotoxicity to a macrophage-like cell line). These results begin to provide phenotypes that can be related to genetic differences identified in the genomic sequences of bordetellae.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 251 ◽  
Author(s):  
Adriana Rodriguez-Garraus ◽  
Amaya Azqueta ◽  
Ariane Vettorazzi ◽  
Adela López de Cerain

Silver nanoparticles (AgNPs) are widely used in diverse sectors such as medicine, food, cosmetics, household items, textiles and electronics. Given the extent of human exposure to AgNPs, information about the toxicological effects of such products is required to ensure their safety. For this reason, we performed a bibliographic review of the genotoxicity studies carried out with AgNPs over the last six years. A total of 43 articles that used well-established standard assays (i.e., in vitro mouse lymphoma assays, in vitro micronucleus tests, in vitro comet assays, in vivo micronucleus tests, in vivo chromosome aberration tests and in vivo comet assays), were selected. The results showed that AgNPs produce genotoxic effects at all DNA damage levels evaluated, in both in vitro and in vivo assays. However, a higher proportion of positive results was obtained in the in vitro studies. Some authors observed that coating and size had an effect on both in vitro and in vivo results. None of the studies included a complete battery of assays, as recommended by ICH and EFSA guidelines, and few of the authors followed OECD guidelines when performing assays. A complete genotoxicological characterization of AgNPs is required for decision-making.


Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 189 ◽  
Author(s):  
George Mihail Vlasceanu ◽  
Livia Elena Crica ◽  
Andreea Madalina Pandele ◽  
Mariana Ionita

This study was targeted towards the synthesis and characterization of new chitosan–gelatin biocomposite films reinforced with graphene oxide and crosslinked with genipin. The composites’ mode of structuration was characterized by Fourier Transform Infrared spectroscopy and X-ray diffraction, while morphology and topography were investigated by scanning electron microscopy, nano-computer tomography and profilometry. Eventually, thermal stability was evaluated through thermogravimetrical analysis, mechanical properties assessment was carried out to detect potential improvements as a result of graphene oxide (GO) addition and in vitro enzyme degradation was performed to discern the most promising formulations for the maturation of the study towards in vivo assays. In accordance with similar works, results indicated the possibility of using GO as an agent for adjusting films’ roughness, chemical stability and polymer structuration. The enzymatic stability of chitosan–gelatin (CHT-GEL) films was also improved by genipin (GEN) crosslinking and GO supplementation, with the best results being obtained for CHT-GEL-GEN and CHT-GEL-GEN-GO3 (crosslinked formulation with 3 wt.% GO). Yet, contrary to previous reports, no great enhancement of CHT-GEN-GEL-GO thermal performances was obtained by the incorporation of GO.


2020 ◽  
Vol 477 (7) ◽  
pp. 1261-1286 ◽  
Author(s):  
Marie Anne Richard ◽  
Hannah Pallubinsky ◽  
Denis P. Blondin

Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.


Sign in / Sign up

Export Citation Format

Share Document