scholarly journals Cell Wall Lignin is Polymerised by Class III Secretable Plant Peroxidases in Norway Spruce

2010 ◽  
Vol 52 (2) ◽  
pp. 186-194 ◽  
Author(s):  
Kurt V. Fagerstedt ◽  
Eija M. Kukkola ◽  
Ville V.T. Koistinen ◽  
Junko Takahashi ◽  
Kaisa Marjamaa
2003 ◽  
Vol 30 (6) ◽  
pp. 577 ◽  
Author(s):  
Alfonso Ros Barceló ◽  
Federico Pomar ◽  
Matías López-Serrano ◽  
Maria Angeles Pedreño

Peroxidases are heme-containing enzymes that catalyse the one-electron oxidation of several substrates at the expense of H2O2. They are probably encoded by a large multigene family in grapevines, and therefore show a high degree of polymorphism. Grapevine peroxidases are glycoproteins of high thermal stability, whose molecular weight usually ranges from 35 to 45 kDa. Their visible spectrum shows absorption bands characteristic of high-spin class III peroxidases. Grapevine peroxidases are capable of accepting a wide range of natural compounds as substrates, such as the cell wall protein extensin, plant growth regulators such as IAA, and phenolics such as benzoic acids, stilbenes, flavonols, cinnamyl alcohols and anthocyanins. They are located in cell walls and vacuoles. These locations are in accordance with their key role in determining the final cell wall architecture, especially regarding lignin deposition and extensin insolubilization, and the turnover of vacuolar phenolic metabolites, a task that also forms part of the molecular program of disease resistance. Although peroxidase is a constitutive enzyme in grapevines, its levels are strongly modulated during plant cell development and in response to both biotic and abiotic environmental factors. To gain an insight into the metabolic regulation of peroxidase, several authors have studied how grapevine peroxidase and H2O2 levels change in response to a changing environment. Nevertheless, the results obtained are not always easy to interpret. Despite such difficulties, the response of the peroxidase–H2O2 system to both UV-C radiation and Trichoderma viride elicitors is worthy of study. Both UV-C and T. viride elicitors induce specific changes in peroxidase isoenzyme / H2O2 levels, which result in specific changes in grapevine physiology and metabolism. In the case of T. viride-elicited grapevine cells, they show a particular mechanism for H2O2 production, in which NADPH oxidase-like activities are apparently not involved. However, they offer a unique system whereby the metabolic regulation of peroxidase by H2O2, with all its cross-talks and downstream signals, may be elegantly dissected.


2011 ◽  
Vol 57 (No. 1) ◽  
pp. 1-7 ◽  
Author(s):  
J. Malá ◽  
M. Hrubcová ◽  
P. Máchová ◽  
H. Cvrčková ◽  
O. Martincová ◽  
...  

We examined defence responses in embryogenic cell suspension cultures of Norway spruce (Picea abies [L.] Karst) elicited by intracellular protein and cell wall fractions (PF and WF, respectively) prepared from mycelia of the fungus Sirococcus strobilinus Preuss focusing on changes in (soluble and cell wall-bound) phenolic and stilbene concentrations. Treatment with both preparations induced an increase in the total contents of phenolic acids in Norway spruce cells and variations in the levels of stilbene glycosides. More rapid and intense induction of defence response was observed in cells after WF application. The contents of soluble phenolic acids (especially benzoic acid derivatives) and cell wall-bound phenolic acids (especially ferulic acid) started to increase (relative to controls) within 4 h after the addition of the WF preparation and remained high in elicited cells for 8–12 h. A moderate increase in phenolic acids in cells exposed to the PF preparation was observed within 8 h after application. However, after 24 h of WF treatment a decline of total phenolics was observed, while in PF elicited Norway spruce cells the phenolic content continued to increase. Significantly decreased concentrations of stilbene glycosides, isorhapontin, astringin and piceid, were determined in PF and WF treated Norway spruce cell cultures. The total content of stilbene glycosides decreased within 8 h after WF application to 68% of the amount determined in the control and within 12 h to 73% of the control in PF-treated cells. These results demonstrate that both PF and WF prepared from the Sirococcus strobilinus mycelium elicit changes in the metabolism of phenylpropanoids, which are involved in the defence responses of plants to pathogens.


2020 ◽  
Vol 40 (7) ◽  
pp. 943-955
Author(s):  
Eva Darenova ◽  
Petr Horáček ◽  
Jan Krejza ◽  
Radek Pokorný ◽  
Marian Pavelka

Abstract Stem respiration is an important component of an ecosystem’s carbon budget. Beside environmental factors, it depends highly on tree energy demands for stem growth. Determination of the relationship between stem growth and stem respiration would help to reveal the response of stem respiration to changing climate, which is expected to substantially affect tree growth. Common measurement of stem radial increment does not record all aspects of stem growth processes, especially those connected with cell wall thickening; therefore, the relationship between stem respiration and stem radial increment may vary depending on the wood cell growth differentiation phase. This study presents results from measurements of stem respiration and increment carried out for seven growing seasons in a young Norway spruce forest. Moreover, rates of carbon allocation to stems were modeled for these years. Stem respiration was divided into maintenance (Rm) and growth respiration (Rg) based upon the mature tissue method. There was a close relationship between Rg and daily stem radial increment (dSRI), and this relationship differed before and after dSRI seasonal maximum, which was around 19 June. Before this date, Rg increased exponentially with dSRI, while after this date logarithmically. This is a result of later maxima of Rg and its slower decrease when compared with dSRI, which is connected with energy demands for cell wall thickening. Rg reached a maxima at the end of June or in July. The maximum of carbon allocation to stem peaked in late summer, when Rg mostly tended to decrease. The overall contribution of Rg to stem CO2 efflux amounted to 46.9% for the growing period from May to September and 38.2% for the year as a whole. This study shows that further deeper analysis of in situ stem growth and stem respiration dynamics is greatly needed, especially with a focus on wood formation on a cell level.


2009 ◽  
Vol 33 (3) ◽  
pp. 128-135 ◽  
Author(s):  
Arno Sipponen ◽  
Rainer Peltola ◽  
Janne J. Jokinen ◽  
Kirsi Laitinen ◽  
Jouni Lohi ◽  
...  

2007 ◽  
Vol 73 (7) ◽  
pp. 2128-2134 ◽  
Author(s):  
Silke Hagen ◽  
Florentine Marx ◽  
Arthur F. Ram ◽  
Vera Meyer

ABSTRACT The antifungal protein AFP from Aspergillus giganteus is highly effective in restricting the growth of major human- and plant-pathogenic filamentous fungi. However, a fundamental prerequisite for the use of AFP as an antifungal drug is a complete understanding of its mode of action. In this study, we performed several analyses focusing on the assumption that the chitin biosynthesis of sensitive fungi is targeted by AFP. Here we show that the N-terminal domain of AFP (amino acids 1 to 33) is sufficient for efficient binding of AFP to chitin but is not adequate for inhibition of the growth of sensitive fungi. AFP susceptibility tests and SYTOX Green uptake experiments with class III and class V chitin synthase mutants of Fusarium oxysporum and Aspergillus oryzae showed that deletions made the fungi less sensitive to AFP and its membrane permeabilization effect. In situ chitin synthase activity assays revealed that chitin synthesis is specifically inhibited by AFP in sensitive fungi, indicating that AFP causes cell wall stress and disturbs cell integrity. Further evidence that there was AFP-induced cell wall stress was obtained by using an Aspergillus niger reporter strain in which the cell wall integrity pathway was strongly induced by AFP.


1998 ◽  
Vol 331 (2) ◽  
pp. 513-519 ◽  
Author(s):  
Alberto VITALI ◽  
Bruno BOTTA ◽  
Giuliano DELLE MONACHE ◽  
Sabrina ZAPPITELLI ◽  
Paola RICCIARDI ◽  
...  

An acidic peroxidase (EC 1.11.1.7) produced by cell suspension cultures of Cassia didymobotrya(wild senna) was purified from culture medium collected on the 29th day. The enzyme was shown to be a glycoprotein with a pI of 3.5, a molecular mass of approx. 43 kDa by SDS/PAGE and 50 kDa by gel filtration. The N-terminal sequence was very similar to those of other plant peroxidases. The peroxidase was characterized by a high specificity towards coniferyl alcohol and other natural phenolics such as guaiacol and ferulic and caffeic acids. These findings suggest that the enzyme is involved in lignification processes of the cell wall. Moreover, the enzyme was able to catalyse the oxidation of 4,3´,4´-trihydroxychalcone and 4,3´,4´-trihydroxy-3-methoxychalcone to the corresponding 3,3´-biflavanones, as mixtures of racemic and mesoforms.


2018 ◽  
Author(s):  
Joseph R. Jacobowitz ◽  
Jing-Ke Weng

AbstractPollen and microspore development is an essential step in the life cycle of all land plants that generate male gametes. Within flowering plants, pollen development occurs inside of the anther. Here, we report the identification of two class III peroxidase-encoding genes, PRX9 and PRX40, that are genetically redundant and essential for proper anther and pollen development in Arabidopsis thaliana. Arabidopsis double mutants devoid of functional PRX9 and PRX40 are male-sterile. The mutant anthers display swollen, hypertrophic tapetal cells and pollen grains, suggesting disrupted cell wall integrity. These phenotypes ultimately lead to nearly 100%-penetrant pollen degeneration upon anther maturation. Using immunochemical and biochemical approaches, we show that PRX9 and PRX40 are likely extensin peroxidases that contribute to the establishment of tapetal cell wall integrity during anther development. This work identifies PRX9 and PRX40 as the first extensin peroxidases to be described in Arabidopsis and highlights the importance of extensin cross-linking during plant development.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Qiang Li ◽  
Xiujuan Qin ◽  
Jingjing Qi ◽  
Wanfu Dou ◽  
Christophe Dunand ◽  
...  

AbstractCitrus bacterial canker (CBC) results from Xanthomonas citri subsp. citri (Xcc) infection and poses a grave threat to citrus production. Class III peroxidases (CIII Prxs) are key proteins to the environmental adaptation of citrus plants to a range of exogenous pathogens, but the role of CIII Prxs during plant resistance to CBC is poorly defined. Herein, we explored the role of CsPrx25 and its contribution to plant defenses in molecular detail. Based on the expression analysis, CsPrx25 was identified as an apoplast-localized protein that is differentially regulated by Xcc infection, salicylic acid, and methyl jasmone acid in the CBC-susceptible variety Wanjincheng (C. sinensis) and the CBC-resistant variety Calamondin (C. madurensis). Transgenic Wanjincheng plants overexpressing CsPrx25 were generated, and these transgenic plants exhibited significantly increased CBC resistance compared with the WT plants. In addition, the CsPrx25-overexpressing plants displayed altered reactive oxygen species (ROS) homeostasis accompanied by enhanced H2O2 levels, which led to stronger hypersensitivity responses during Xcc infection. Moreover, the overexpression of CsPrx25 enhanced lignification as an apoplastic barrier for Xcc infection. Taken together, the results highlight how CsPrx25-mediated ROS homeostasis reconstruction and cell wall lignification can enhance the resistance of sweet orange to CBC.


1988 ◽  
Vol 43 (1-2) ◽  
pp. 37-41 ◽  
Author(s):  
Dieter Strack ◽  
Jürgen Heilemann ◽  
Eva-Susan Klinkott ◽  
Victor Wray

Insoluble phenolics have been isolated and identified from Norway spruce (Picea abies [L.] KARST.) needles as cell wall-bound astragalin (kaempferol 3-O-β-glucoside) and p-coumaric acid as major components, and ferulic acid as a minor one. They probably mainly occur as lignincarbohydrate complexes


Sign in / Sign up

Export Citation Format

Share Document