Macroeconomic Impact of Establishing a Large-scale Fuel Ethanol Plant on the Canadian Economy

Author(s):  
Paul J. Thomassin ◽  
Laurie Baker
2020 ◽  
Vol 97 (12) ◽  
pp. 1299-1308
Author(s):  
Robert A. Moreau ◽  
Megan E. Sharma ◽  
Alberto Nuñez ◽  
Charles A. Mullen ◽  
Michael J. Powell ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 518 ◽  
Author(s):  
Heng Liu ◽  
Lijun Ren ◽  
Huimin Zhuo ◽  
Sanze Fu

Fuel ethanol is considered to be a clean alternative fuel to meet increasing energy demands and mitigate environmental pollution. Faced with challenges in terms of energy security and environmental pollution, China is vigorously developing fuel ethanol. However, ethanol-manufacturing is a water-intensive industry; it consumes large volumes of fresh water and generates a corresponding amount of waste water. Expansion of this industry can reduce water quality and cause water stress. This study aims to combine the water footprint (WF) with a water pinch analysis technique to manage water consumption and sewage discharge systematically in an ethanol plant. A well-operated cassava ethanol plant in China was chosen as a case study. The WF of industrial ethanol production was evaluated. The total WF was 17.08 L/L ethanol, comprised of a 7.69 L blue water footprint (BWF), and a 9.39 L gray water footprint (GWF). The direct WF was 16.38 L/L ethanol, and the indirect WF was 0.70 L/L ethanol. Thereafter, a water pinch analysis was conducted, and the optimal direct water reuse scheme was studied. After the water network was optimized, the BWF was reduced by 0.98 L/L ethanol, while the GWF was reduced by 1.47 L/L ethanol. These results indicate that the combined use of WF and pinch analysis can provide the starch-based ethanol industry with an effective tool to improve its water management.


1984 ◽  
Vol 62 (45) ◽  
pp. 25
Author(s):  
WARD WORTHY
Keyword(s):  

2020 ◽  
Author(s):  
Ana Paula Jacobus ◽  
Timothy G. Stephens ◽  
Pierre Youssef ◽  
Raul González-Pech ◽  
Yibi Chen ◽  
...  

AbstractEthanol production from sugarcane is a key renewable fuel industry in Brazil. Major drivers of this alcoholic fermentation are Saccharomyces cerevisiae strains that originally were contaminants to the system and yet prevail in the industrial process. Here we present newly sequenced genomes (using Illumina short-read and PacBio long-read data) of two monosporic isolates (H3 and H4) of the S. cerevisiae PE-2, a predominant bioethanol strain in Brazil. The assembled genomes of H3 and H4, together with 42 draft genomes of sugarcane-fermenting (fuel ethanol plus cachaça) strains, were compared against those of the reference S288c and diverse S. cerevisiae. All genomes of bioethanol yeasts have amplified SNO2(3)/SNZ2(3) gene clusters for vitamin B1/B6 biosynthesis, and display ubiquitous presence of SAM-dependent methyl transferases, a gene family rare in S. cerevisiae. Widespread amplifications of quinone oxidoreductases YCR102C/YLR460C/YNL134C, and the structural or punctual variations among aquaporins and components of the iron homeostasis system, likely represent adaptations to industrial fermentation. Interesting is the pervasive presence among the bioethanol/cachaça strains of a five-gene cluster (Region B) that is a known phylogenetic signature of European wine yeasts. Combining genomes of H3, H4, and 195 yeast strains, we comprehensively assessed whole-genome phylogeny of these taxa using an alignment-free approach. The 197-genome phylogeny substantiates that bioethanol yeasts are monophyletic and closely related to the cachaça and wine strains. Our results support the hypothesis that biofuel-producing yeasts in Brazil may have been co-opted from a pool of yeasts that were pre-adapted to alcoholic fermentation of sugarcane for the distillation of cachaça spirit, which historically is a much older industry than the large-scale fuel ethanol production.


2009 ◽  
Vol 23 (6) ◽  
pp. 3277-3284 ◽  
Author(s):  
Thomas J. Bruno ◽  
Arron Wolk ◽  
Alexander Naydich

2021 ◽  
Vol 12 ◽  
Author(s):  
Ana Paula Jacobus ◽  
Timothy G. Stephens ◽  
Pierre Youssef ◽  
Raul González-Pech ◽  
Michael M. Ciccotosto-Camp ◽  
...  

Ethanol production from sugarcane is a key renewable fuel industry in Brazil. Major drivers of this alcoholic fermentation are Saccharomyces cerevisiae strains that originally were contaminants to the system and yet prevail in the industrial process. Here we present newly sequenced genomes (using Illumina short-read and PacBio long-read data) of two monosporic isolates (H3 and H4) of the S. cerevisiae PE-2, a predominant bioethanol strain in Brazil. The assembled genomes of H3 and H4, together with 42 draft genomes of sugarcane-fermenting (fuel ethanol plus cachaça) strains, were compared against those of the reference S288C and diverse S. cerevisiae. All genomes of bioethanol yeasts have amplified SNO2(3)/SNZ2(3) gene clusters for vitamin B1/B6 biosynthesis, and display ubiquitous presence of a particular family of SAM-dependent methyl transferases, rare in S. cerevisiae. Widespread amplifications of quinone oxidoreductases YCR102C/YLR460C/YNL134C, and the structural or punctual variations among aquaporins and components of the iron homeostasis system, likely represent adaptations to industrial fermentation. Interesting is the pervasive presence among the bioethanol/cachaça strains of a five-gene cluster (Region B) that is a known phylogenetic signature of European wine yeasts. Combining genomes of H3, H4, and 195 yeast strains, we comprehensively assessed whole-genome phylogeny of these taxa using an alignment-free approach. The 197-genome phylogeny substantiates that bioethanol yeasts are monophyletic and closely related to the cachaça and wine strains. Our results support the hypothesis that biofuel-producing yeasts in Brazil may have been co-opted from a pool of yeasts that were pre-adapted to alcoholic fermentation of sugarcane for the distillation of cachaça spirit, which historically is a much older industry than the large-scale fuel ethanol production.


1990 ◽  
Vol 24-25 (1) ◽  
pp. 695-719 ◽  
Author(s):  
Lee R. Lynd
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document