water pinch
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 7)

H-INDEX

9
(FIVE YEARS 2)

Author(s):  
Cristina A. Villamar ◽  
Katherine Salazar ◽  
Karla Montenegro-Rosero ◽  
Luis Huaraca ◽  
Kennedy C. Conceicao

Abstract The hot-dip galvanizing consumes raw materials, supplies, and influence in the quantity/quality of wastewater, opening advantage for its segregation, reuse, and recycling. Therefore, the aim was to establish strategies for segregation, recycling, and preventives process of wastewater from a hot dip galvanizing enterprise (>10,000 t/year of galvanizing steel or gs). A mass balance (inputs-outputs by 1 t gs), Sindex considering organic and inorganic parameters for segregation/recycling, and Water Pinch (Zn, COD, TDS) for reuse opportunities were determined. Flows diagrams were based on three scenarios that combine segregation/reuse/recycling, comparing saving water, energy, costs, and carbon dioxide equivalent (CO2-eq) emissions. Results (mass balance) demonstrated that the water consumption in the rising phases (2,355.2 L/t gs) corresponding to 95% of the total water demand. The best scenario combined reuse/segregation/recycling, which decreased up to 36% of treated wastewater, up to 40% of chemicals consumption, about 41% of treatment cost, close to 38% of energy consumed, up to 17% of CO2-eq emissions by wastewater treatment. Therefore, taking preventive measures without the need of technological changes (treatment) can achieve on efficient water management within of the hot dip galvanizing production in developing countries.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2397
Author(s):  
Antonio Zuorro ◽  
Kariana Andrea Moreno-Sader ◽  
Ángel Darío González-Delgado

The high freshwater consumption requirements in shrimp biorefinery approaches represents one of the major drawbacks of implementing these technologies within the shrimp processing industry. This also affects the costs associated with the plant operation, and consequently, the overall economic performance of the project. The application of mass integration tools such as water pinch analysis can reduce frewshwater consumption by up to 80%, contributing to shrimp biorefinery sustainability. In this work, the economic evaluation and the techno-economic sensitivity analysis for a mass integrated approach for shrimp biorefinery were performed to determine the economic feasibility of the project when located in the North-Colombia region and to identify the critical techno-economic variables affecting the profitability of the process. The integrated approach designed to process 4113.09 tons of fresh shrimp in Colombia reaches a return on investment (%ROI) at 65.88% and a net present value (NPV) at 10.40 MM USD. The process supports decreases of up to 28% in capacity of production and increases of 12% and 11% in the cost of raw materials and variable operating costs without incurring losses, respectively. These findings suggest that the proposed design of the water recycling network coupled to a shrimp biorefinery approach is attractive from an economic point of view.


2019 ◽  
Vol 11 (16) ◽  
pp. 4492 ◽  
Author(s):  
Nemati-Amirkolaii ◽  
Romdhana ◽  
Lameloise

The implementation of sustainable water management practices, through the recycling and reuse of water, is essential in terms of minimizing production costs and the environmental impact of the food industry. This problem goes beyond the classical audit and housekeeping practices through developing a systemic water-using reduction strategy. The implementation of such an approach needs R&D development, especially for the food industry, where there is a lack of knowledge on: (a) process integration and (b) data on the pollutant indicators or (c) volumes of water used and discharged at specific steps of the food processing line. Since energy pinch analysis emerged, different variations of pinch methods have been developed. As a variation of pinch, Water pinch analysis is a global and systematic approach to minimize water consumption and discharges, especially for the most energy-intensive and water-consuming factories. Based on the nature of the food industry, the real systems are complex, multi-source multi-contaminant systems, the problem should be well formulated, including mathematical constraints (inequalities thresholds). Current work has reviewed comprehensive literature about different variations of pinch analysis. In continue, water pinch method deeply discussed and some relevant data concerning the water using process and pollutant indicators have been reviewed with emphasis on the food industry sector.


Water ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 518 ◽  
Author(s):  
Heng Liu ◽  
Lijun Ren ◽  
Huimin Zhuo ◽  
Sanze Fu

Fuel ethanol is considered to be a clean alternative fuel to meet increasing energy demands and mitigate environmental pollution. Faced with challenges in terms of energy security and environmental pollution, China is vigorously developing fuel ethanol. However, ethanol-manufacturing is a water-intensive industry; it consumes large volumes of fresh water and generates a corresponding amount of waste water. Expansion of this industry can reduce water quality and cause water stress. This study aims to combine the water footprint (WF) with a water pinch analysis technique to manage water consumption and sewage discharge systematically in an ethanol plant. A well-operated cassava ethanol plant in China was chosen as a case study. The WF of industrial ethanol production was evaluated. The total WF was 17.08 L/L ethanol, comprised of a 7.69 L blue water footprint (BWF), and a 9.39 L gray water footprint (GWF). The direct WF was 16.38 L/L ethanol, and the indirect WF was 0.70 L/L ethanol. Thereafter, a water pinch analysis was conducted, and the optimal direct water reuse scheme was studied. After the water network was optimized, the BWF was reduced by 0.98 L/L ethanol, while the GWF was reduced by 1.47 L/L ethanol. These results indicate that the combined use of WF and pinch analysis can provide the starch-based ethanol industry with an effective tool to improve its water management.


Spark ◽  
2019 ◽  
Author(s):  
Klemeš Jiří Jaromír ◽  
Varbanov Petar Sabev ◽  
Wan Alwi Sharifah Rafidah ◽  
Manan Zainuddin Abdul
Keyword(s):  

Spark ◽  
2018 ◽  
Author(s):  
Jiøí Jaromír Klemeš ◽  
Petar Sabev Varbanov ◽  
Sharifah Rafidah Wan Alwi ◽  
Zainuddin Abdul Manan
Keyword(s):  

2018 ◽  
Vol 172 ◽  
pp. 786-794 ◽  
Author(s):  
George Skouteris ◽  
Sabèha Ouki ◽  
Dominic Foo ◽  
Devendra Saroj ◽  
Maria Altini ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document